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ABSTRACT. This study discusses evaluation of material dependence of multiaxial low
cycle fatigue (LCF) to develop a suitable strain parameter for life estimation under
non-proportional loading. It has been reported that fatigue lives are reduced
accompanying an additional hardening under strain controlled non-proportional
loading in which principal directions of stress and strain are changed in a cycle. Strain
controlled multiaxial LCF tests using proportional and non-proportional strain paths
were carried out using hollow cylinder specimens of several materials. The reduction in
low cycle fatigue life due to non-proportional loading is discussed relating to the
additional cyclic hardening behaviors and its material dependence. Material constant,
a, used in strain parameter for life estimation under non-proportional multiaxial LCF is
also discussed.

INTRODUCTION

Components and structures like pressure vessels and high temperature exchangers
undergo low cycle fatigue (LCF) damage. In multiaxial LCF under strain controlled
non-proportional loading in which principal directions of stress and strain are changed
in a cycle, it has been reported that fatigue lives are reduced accompanying with an
additional hardening which depends on both strain paths and materials [1-5]. Thus,
developing an appropriate design parameter for multiaxial LCF is required for the
reliable designs and maintenances of structure components.

Itoh et al. [4-7] have carried out a series of multiaxial LCF tests under
non-proportional loading with various strain paths combined axial and shear loadings
using a hollow cylinder specimen and have examined the dependence of the life on the
strain path and the material. They also proposed a strain parameter for estimating
multiaxial LCF life under non-proportional loading. However, these studies were
performed mainly for materials of which crystal structure is face-centered cubic lattice
(FCC), but no study for materials with other crystal structures like body-centered cubic
lattice (BCC). Thus, it should be necessary to examine the fatigue life properties for the
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Table 1. List of materials and parameters employed.

*

Material CS A B a a 0B 002 (o—002)/ 0B
SUS316 0.010 | 0.93 0.75 0.75 575 260 0.55
SUS304 0.012 | 0.87 0.9 0.8 750 290 0.61
SUS304 (923K) FCC 0.011 | 0.14 0.40 0.52 480 130 0.73
SUS310S 0.009 | 0.92 0.76 0.70 520 215 0.59
OFHC 0.009 | 0.16 0.16 0.20 240 182 0.24
6061A1 0.018 | 0.16 0.41 0.48 390 253 0.35
SGV410 0.008 | 0.85 0.39 0.85 470 275 0.41
S25C 0.008 | 0.49 0.28 0.65 493 354 0.28
S45C BCC | 0.011 | 0.78 0.22 0.50 630 445 0.29
S55C 0.012 | 0.48 0.25 0.45 695 485 0.25
SUS430 0.009 | 0.68 0.28 0.65 480 263 0.45

materials which show the different deformation behaviors [10] and to discuss the
applicability of the strain parameter for life estimation.

In this study, multiaxial LCF tests under strain controlled proportional and
non-proportional loading were carried out using hollow cylinder specimens of several
kinds of materials to examine the relationship between additional hardening and
reduction in failure life due to non-proportional loading. This study also discusses the
material constant, ¢ used in the strain parameter for life estimation under
non-proportional multiaxial LCF and proposes a simple method to revaluate « using
material constant resulted from monotonic tension test.

MATERIALS AND TEST PROCEDURE

Test materials employed were various metallic materials of which crystal structures are
face-centered cubic lattice (FCC) or body-centered cubic lattice (BCC) as listed in Table
1. In the table, coefficients 4 and B, parameters ¢ and a*, etc. will be mentioned later.
The specimen used was a hollow cylinder specimen with O.D. 12mm, [.D. 9mm and
G.L. 7mm as shown in Fig. 1.
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Figurel. Shape and dimensions of specimen (mm).
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Figure 2. Strain paths employed. Figure 3. Axial and shear strain waveforms.

Total strain controlled multiaxial LCF tests were conducted under 2 types of strain
paths. Figures 2 and 3 show the strain paths on &~»/\3 plot and the strain waveforms of
€ and y, respectively, where £ and y are axial and shear strains. Case 1 is the push-pull
test and Case 2 the 90° sinusoidal out-of-phase loading test. The former is the
proportional loading test and the later the non-proportional loading test. Total strain
ranges were set to the same ranges in Case 1 and Case 2 and strain rate was 0.1%/sec
based on Mises basis. Number of cycles to failure (failure life), Ny, is determined as the
cycles at which axial or shear stress range was reduced to 3/4 from that at 1/2Vy.

RESULTS AND DISGUSIONS

Strain Parameter for Life Estimation under Non-proportional Loading

In multiaxial LCF of austenite stainless steels, failure lives decrease drastically under
non-proportional loading accompanied a large additional hardening if the data are
correlated by Mises’ total equivalent strain range. It has been reported that the large
reduction in life has a close relation with strain paths and materials. Therefore, Itoh et al.
[4-7] proposed the non-proportional strain range for life estimation under
non-proportional loading as equated,

Agyp = (1+afNP)AgI (1)

where Aél is the maximum principal strain range under non-proportional loading which
can be calculated by ¢ and 5. « and fyp are the material constant and non-proportional
factor, respectively. The former is the parameter related to the additional hardening due
to non-proportional loading and the later is the parameter expressing the intensity of
non-proportional loading.

The value of a can be given by two methods [10]. One method is to define « as the
ratio of increase in stress amplitude in Case 2 to that in Case 1. The other method is to
define « as Nrin Case 2 becomes the life equivalent to Ny in Case 1 at the same Ael. fap
is defined as,
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where T is the time for a cycle, k is a constant for making fxp=1 in the circular straining
on &y/\3 plot and k=n/2. &l(t) is the maximum absolute value of principle strain given
by el(t)=Max[|e;(t)|, |e3(t)]] at time t and the &lyax 1s the maximum value of &l(t) in a
cycle. In the equation, the angle &(t)/2 is employed in order to describe the rotation of
principal strain direction, Then, &(t) is the angle between el and €l(t) and has double
amplitude compared with that in the specimen [6]. The integrand measures the rotation
of the maximum principal strain direction and the integration of strain amplitude after
the rotation. Therefore, fyp totally evaluates the severity of non-proportional straining in
acycle.

Evaluation of Multiaxial LCF Life
To discuss the material dependence of life, this section shows multiaxial LCF properties
of SUS316 and SGV410. Figures 4 (a) and (b) show Nt correlated by non-proportional
strain range, Aéenp. In the figures, the bold line was drawn based on the data of Case 1
and the two thin lines show a factor of 2 band. The material constant, «, employed here
is determined by evaluating the degree of additional hardening. For SUS316 (2=0.75) in
Fig. 4 (a), Nr in Case 2 is almost the same as that in Case 1. On the other hand, N¢ in
Case 2 for SGV410 (¢=0.39) in Fig. 4 (b) is correlated unconservatively. The similar
trend can also be observed in other FCC and BCC materials.

The difference of properties of reduction in life and additional hardening due to
non-proportional loading may come from the difference of slip mechanism between
FCC and BCC materials. Indeed, crack initiation and growth behaviors under
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Figure 4. Relationship between Aexp and M.
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Figure 5. Relationship between Aexp and N; for SGV410 with o' =0.85.

proportional and non-proportional loadings are different, but more detail description
which can be referred to previous Itoh’s work [7] is omitted here due to a limitation of
maximum number of page.

Figure 5 shows the re-plot of relationship between Aexp and Ny for SGV410 by using
o as material constant for evaluating the degree of reduction in life. Correlation in Fig.
5 shows that N;in Case 2 can be correlated within the factor of 2 band with a'=0.85.

Evaluation of Material Constant o
In order to investigate the relationship between properties of multiaxial LCF life and
additional hardening under non-proportional loading, this section evaluates the
relationship between the material constants o and o used in the non-proportional strain
range, A&np, based on the results obtained by tested materials.

To obtain life curves with a small number of data in Case 1 and Case 2 for each
material, the universal slope method was employed equated in Eq. 3 [11].

Aeny =1+ @ fip) AeT= AN, + BN, 3)

where the coefficients 4 and B are equated as 3.505/E and &, respectively according to
the definition of the universal slope method. Here, E, o and & are Yong’s modulus,
strength and elongation. In this study, 4 is put as 3.50p/E accordingly, but B is
determined as life curves based on the lives in Case 1. & is put as lives in Case 1 and
Case 2 correspond at the same Ael for each material. In this study, monotonic tension
test were conducted for each material to obtain these material constants including 0.2%
proof stress, op,. The constants obtained from the test were listed on Table 1.

Figure 6 shows the relationship between « and o for each material. The solid mark
shows the data for BCC materials and the open mark for FCC materials. Keys shown in
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the figure will be referred in the following figures. The relationship is shown by two
straight lines for FCC and BCC materials separately although a few data are scattered
slightly. It suggests that reduction in life has closely relationship with additional
hardening in non-proportional loading, which depends on crystal structure of tested
materials. The relationship between and & can be expressed experimentally as,

(4)

. | a for FCC
| 2a  for BCC

In order to verify the application of life estimation under non-proportional loading,
the comparison of N and N in Case 2 is shown in Fig. 7. N&* is the life obtained
from experiment and Ni™ the life evaluated by Eq. 1 based on life curve in push-pull
test. In the calculation by Eq. 1, ¢ is used for material constant. All the data are
correlated within the factor of 2 band, which suggests that failure lives under
non-proportional loading for various materials can be estimated by Aexp if the degree of

additional hardening is known with using the relationship in Eq. 4.

A SIMPLE METHOD FOR EVALUATION OF a AND LIFE EVALUATION

As discussed above, multiaxial LCF life shows the large reduction in life under
non-proportional loading in comparison with that under proportional loading. By using
non-proportional strain parameter, Agxp in Eq. 1, multiaxial LCF life can be estimated
from the data in push-pull loading test. However, to obtain the value of material
constant, ¢, multiaxial fatigue tests under non-proportional loading is necessary, but it is
usually difficult to conduct. If & can be obtained without conducting the multiaxial
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Figure 9. Comparison of Ny between
experiment and calculation by
Eq. 6.

fatigue test, it will be very convenient for engineers to estimate LCF life under
non-proportional loading.

This section discusses the revaluation of & with focusing on the relationship between
a and material constants resulted from the monotonic tension test. Cyclic hardening and
additional hardening behaviors should have close relationship with static deformation
behavior, then relationship between (op—0p2)/o5 and « is shown in Fig. 8. Although
some scatter of data can be seen, but the relationship can be equated approximately as,

(O-B ) )

Og

()

a =

According to Egs 1, 4 and 5, non-proportional strain range, A& wp, can be rewritten as,

A&y = (

where coefficient K takes K= 1 for FCC materials and K=2 for BCC materials.

Figure 9 shows the comparison of Ny in Case 2 between experiment and calculation.
In the figure, NF™ is the life in experiment and Ni™ the life estimated based on life
curve in push-pull test (Case 1 test) with using Aewp in Eq. 6. Consequently, all the data
is correlated within the factor of 3 band and most of them correlated within the factor of
2 band. The good correlation in Fig. 9 indicates that multiaxial LCF life under
non-proportional can be evaluated by Eq. (6) and material constants resulted from

monotonic tension test.

O, — O
1+ KZB %02 prj Adl (6)

Op

141



CONCLUSIONS

1.

Reduction in life has closely relationship with additional hardening under
non-proportional loading which depends on crystal structure of tested materials.

2. a and o which related to reduction in life and additional hardening due to
non-proportional loading are revaluated and can be equated by different linear
relationships in BCC and FCC materials, respectively.

3. «a has a closely relation with the behavior of monotonic tension test and a can be
equated as a=(os—0v2)/os. The failure lives in non-proportional loading can be
estimated by Aexp where « is replaced by (o3—00.2)/ Op.
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