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Abstract The paper presents numerical methods used for predicting crack paths in technical structures based
on the theory of linear elastic fracture mechanics. To simulate crack growth, the FE-method is used in combina-
tion with a smart re-meshing algorithm. Different methods providing accurate crack loading parameters partic-
ularly for curved cracks such as the J-integral or stress intensity factors (SIF) are presented. Path-independent
contour integrals [12] are used to avoid special requirements concerning crack tip meshing and to enable effi-
cient calculations for domains including interfaces and internal boundaries. The integration paths being finite
and far from the crack tip, special attention has to be directed to the treatment of the crack face integral since
the calculation of the coordinateJ2 is challenging [5]. The same holds for the coordinateMII

2 of the interaction
integral related to a mode-II auxiliary loading. In particular, the interaction of multiple cracks and internal
boundaries and interfaces is investigated. Calculating the global J-integral, including all crack tips existing in
a structure, leads to the necessity of a separation procedure to determine the parts of J related to each single
crack tip.
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1. Introduction

Path-independent integrals are widely applied to calculate loading quantities such as stress intensity
factors, the energy release rate or the J-integral. The J-integral is based on Eshelby’s [6] general
theory of forces acting at singularities. Rice [12] and Cherepanov [4] applied the formulation of this
path-independent integral to strain concentration problems like notches and cracks. Herrmann and
Herrmann [10] extended Rices’ approach ofJ, which was limited to straight cracks, by a formula-
tion of the two-dimensionalJk-integral vector which is composed of the coordinateJ1 = J andJ2.
Bergez [2] presented a relation betweenJk-integral and SIF. It is well-known that the calculation of
theJ2-integral is challenging since the numerical treatment of the singular stresses at the crack tip is
going along with problems finally leading to inaccurate results. A semi-analytical approach for the
calculation ofJ2 considering straight cracks was presented by Eischen [5].
The M-integral is a conservation integral based on the superposition of two loading scenarios [13, 14],
i.e. the actual and an auxiliary loading. In general, the near tip solution is employed to obtain auxil-
iary fields limiting this method to straight cracks in homogeneous materials without interfaces. Gosz
et. al. [7, 8] applied the M-integral to three-dimensional crack problems considering interfaces and
curved crack fronts, however still maintaining straight crack faces.
This paper presents two new methods for calculating accurate values ofJ2 which are valid for straight
and curved cracks. Further, theMk-interaction integral vector is calculated for arbitrary curved crack
faces.
Crack path predictions for multiple crack systems are carried out classically by applying crack tip ele-
ments [3] or the M-integral associated with small integration contours [16]. Additionally, a separation
procedure is introduced, to calculate accurate loading quantities from a globalJk-integral calculation,

representing the sum of allJ(i)k -integral vectors, related to the i-th crack tip. Resultingcrack paths of
a crack propagation simulation considering two cracks are presented.
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2. Path-independent contour integrals
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Figure 1. Integration contours, actual and fictitious crackfacesΓC andΓF for path-independentJk and
Mk-integrals.

Within the theory of Linear Elastic Fracture Mechanics (LEFM) the Jk-integral vector is a path-
independent energy conservation integral. With an integration contourΓε in the vicinity of the crack
tip at a distanceε, theJk-integral is defined as

Jk = lim
ε→0

∫

Γε

Qk jn jds (1)

with Eshelby’s tensorQk j, including the stress tensorσmn, the strain tensorεmn and the displacement
derivativesui,k:

Qk j =
1
2

σmnεmnδk j −σi jui,k (2)

The Kronecker identity tensor is denoted asδk j. In LEFM the coordinates of Eq. (1) are related
directly to the stress intensity factors [2]:

J1 =
K2

I +K2
II

E ′ , J2 =−2
KI KII

E ′ (3)

For plain stressE ′ = E and for plain strainE ′ = E/
(

1−ν2
)

. The energy release rateG is the projec-
tion of Jk onto the unit vector of crack propagation directionzk:

G = Jk zk (4)

If the Jk-integral is calculated, assuming two different superimposed loading scenarios(1) and(2) for
an arbitrary crack configuration, one obtains the followingexpression:

J(1)+(2)
k = lim

ε→0

∫

Γε

Q(1)+(2)
k j n jds = lim

ε→0

∫

Γε

(

Q(1)
k j +Q(2)

k j +Q(1/2)
k j

)

n jds = J(1)k + J(2)k + J(1/2)
k (5)
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The third term of Eq. (5) is the interaction integral vectorJ(1/2)
k and will be denoted from now on as

Mk,

Mk = lim
ε→0

∫

Γε

Q(1/2)
k j n jds (6)

with Eshelby’s tensor related to the interaction integral

Q(1/2)
k j =

1
2

(

σ (1)
mn ε(2)mn +σ (2)

mn ε(1)mn

)

δk j −
(

σ (1)
i j u(2)i,k +σ (2)

i j u(1)i,k

)

(7)

For straight crack faces, the near-tip solution yields valid fieldsεmn, σmn, ui,k associated to an auxiliary
loading configuration and is therefore usually applied as auxiliary field. The relation between the
coordinates of Eq. (6) and stress intensity factors is as follows:

MI
1 = 2

KI

E ′ , MI
2 =−2

KII

E ′ , MII
1 = 2

KII

E ′ , MII
2 =−2

KI

E ′ (8)

The superscripts I and II denote a single mode-I or single mode-II auxiliary loading. If finite integra-
tion contoursΓR are considered, the coordinates ofJk andMk in general become path-dependent. If
crack faces are straight, see Fig. 1(a), the path-dependence is restricted toJ2 andMII

2 in the case of
mixed-mode loading. If curved crack faces are considered, seeΓC in Fig. 1(b), both coordinates ofJk

andMk are depending on the chosen integration contourΓR. To hold path-independence, crack face
integrals with dΓC = dΓ+

C = −dΓ−
C have to be introduced, describing the jump of Eshelby’s tensor

across the crack faces:

Jk =
∫

ΓR

Qk jn jds+
∫

ΓC

r

Qk j

z+

−
n jds (9a)

Mk =

∫

ΓR

Q(1/2)
k j n jds+

∫

ΓC

r

Q(1/2)
k j

z+

−
n jds (9b)

In contrast to theJk-integral according to Eq. (9a), theMk-integral according to Eq. (9b) is still
not path-independent, if curved crack faces are considered. Path-independence is finally achieved
including an integration along the fictitious crack surfaces dΓF = dΓ+

F =−dΓ−
F , see Fig. 1(b):

Mk =
∫

ΓR

Q(1/2)
k j n jds+

∫

ΓC

r

Q(1/2)
k j

z+

−
n jds+

∫

ΓF

r

Q(1/2)
k j

z+

−
n jds (10)

These are corresponding to the auxiliary fields which are taken from the asymptotic crack tip solu-
tions. Thus, the fictitious crack facesΓF and the actual onesΓC always coincide at the crack tip. The
integration in the vicinity of the crack tip based on numerical values provided from the FE-calculation
is challenging. As the numerical representation of the singularity in stresses and strains deviates
strongly from analytic solutions, the calculation of crackface integrals needs a special treatment.

3. Extended crack face integration

In this section, two methods are presented producing sufficiently accurate results for the crack face
integration. Both are applied to theJk- andMk- integral calculation, however only the first one is
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Figure 2. Curved crack facesΓ+, Γ−, crack tip coordinate systemxi, global coordinate systemxi,
local crack face coordinate systemxs

i depending on the position, arc lengthxc along the
crack faces with its origin at the crack tip, regionδ where numerically calculated values for
crack face integrals deviate strongly from the analytic ones.

presented here.
When calculatingJk by integrating along a circular contourΓR with the radiusR and considering
curved cracks as shown in Fig. 1(b), the crack face integral needs to be taken into account. Is the crack
face integral calculated conventionally, this leads to a considerable error in the second coordinateJ2,
and therefore in the SIF calculated fromJk with Eqs. (3):

KI =±

√

√

√

√

√

E ′ J1

2



1±

√

1−
(

J2

J1

)2


, KII =±

√

√

√

√

√

E ′ J1

2



1∓

√

1−
(

J2

J1

)2


 (11)

3.1. Method 1: Analytic extension method

In the vicinity of the crack tip, the integrand can be formulated analytically. Therefore, the crack
face integral of Eq. (9a) is divided into one part calculatednumerically and the other part calculated
analytically:

Jk =
∫

ΓR

Qk jn jds+

δ
∫

R

r

Qk j

z+

−
n jds+

0
∫

δ

r

Qk j

z+

−
n jds (12)

The parameterδ separates both parts, see Fig. 2. The crack is assumed to be straight in the vicinity of
the crack tip, as the curvature can be neglected for smallδ . For such a crack, the dominant terms are

the first terms of the series expansionsσ (n)
i j andu(n)i found by Williams [15], representing an infinite

sum of eigenfunctions, completely describing the stress and displacement fields in a cracked body

σ (n)
i j (r, ϕ) =

∞

∑
n=1

r
n
2−1

[

an M(n)
i j (ϕ)+bn N(n)

i j (ϕ)
]

(13a)

u(n)i (r, ϕ) =
1

2µ

∞

∑
n=1

r
n
2
[

an F (n)
i (ϕ)+bn G(n)

i (ϕ)
]

(13b)
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with an andbn being constant coefficients andM(n)
i j (ϕ), N(n)

i j (ϕ), F(n)
i (ϕ) andG(n)

i (ϕ) trigonometric
angular functions. The coefficientsa1 andb1 of the first eigenfunction are related to the SIFKI and
KII and the coefficienta2 of the second eigenfunction is related to the T-stressT11:

KI − iKII =
√

2π (a1+ ib1) , T11 = 4a2 (14)

Substituting Eqs. (13) into Eq. (2), calculating the jump ofEshelby’s tensor across the crack faces
according to the third term on the right hand side of Eq. (12) and considering Eq. (14), the analytical
part of the crack face integral is obtained:

Jana
2 =

0
∫

δ

r

Qk j

z+

−
ds = 8

KII T11
√

δ
E ′
√

2π
(15)

As n j = (0,±1) all along the crack faces, the integral of Eq. (15) contributes toJ2 only. The remaining
two terms of Eq. (12) are calculated numerically, excludingthe small regionδ at the crack tip from
the integration, now readingJnum

k [11]. An iterative procedure is necessary to calculate the analytical
partJana

2 , see Fig. 3.

F
E

M

yesno

iteration

Jnum
1 , Jnum

2

T11, δ

KI, KII

Jana
2 Jn+1

2 = Jnum
2 + Jana

2

∣

∣Jn
2 − Jn+1

2

∣

∣

≤ 10−10?

stop
iteration

Figure 3. Flow chart of the iterative scheme for the calculation of the analytical part of theJk-integral.

The constant T-stress on the crack faces is therefore determined at the positionr = δ from the series
expansion Eq. (13a):

T11 =
1
2
(σs

11(δ ,+π)+σs
11(δ ,−π)) (16)

The stresses on the positive and negative crack facesσs
11(δ ,±π) are extracted from the FE calculation

and substituted into Eq (16). As a first approach,KII is calculated by substitutingJnum
1 andJnum

2 = Jn
2

into Eq. (11).Jana
2 is calculated by substitutingT11, KII andδ into Eq. (15). The valueJn+1

2 of the
present step is the sum ofJnum

2 andJana
2 . If the absolute difference betweenJn+1

2 of the present and
Jn

2 of the previous step is below a critical value, the iterativeprocedure is stopped and the final value
is J2 = Jn+1

2 . If the stop criterion is not fulfilled,KII of the next step is now calculated by substituting
Jnum

1 andJn+1
2 into Eq. (11) and so on.

3.2. Method 2: Extrapolation method

The research revealed, that the incorrect calculation ofJ2 is an outcome of non-symmetric numerical
errors within the regionδ at the crack tip, which are related to a mixed-mode loading configuration
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[11]. A mixed-mode loading is a superposition of a single mode-I and single mode-II loading. Thus,
the values of stresses and strains are split into parts related to mode-I and mode-II loading as follows.
The stresses and displacement gradients related to the symmetric crack tip opening are calculated
according to:

σ I
11(xc) =

1
2
(σs

11(xc,+π)+σs
11(xc,−π)) (17a)

uI
1,1(xc) =

1
2

(

us
1,1(xc,+π)+us

1,1(xc,−π)
)

(17b)

The stress and displacement gradient related to the antimetric crack tip opening are determined by
subtracting the symmetric parts from the total values, i.e.

σ II
11(xc,±π) = σs

11(xc,±π)−σ I
11(xc) (18a)

uII
1,1(xc,±π) = us

1,1(xc,±π)−uI
1,1(xc) (18b)

As the mode-I stresses and strains according to Eqs. (17) exhibit a non-singular behavior on the crack
faces, extrapolatingσ I

11 anduI
1,1 towards the crack tip is feasible. From Fig. 4(a) is becomes obvious,

that particularlyσ I
11 exhibits large numerical errors and thus an extrapolation is reasonable [11]. The

mode-I values within[0,δ ] are replaced by those, calculated from a linear regression.Rearranging
Eqs. (18), the mode-I and mode-II stresses and strains are recombined and the crack face integral is
calculated as usual following Eq. (9a), considering the newvalues. Substituting the resulting values
Jk into Eq. (11), this provides accurate SIF for curved cracks under mixed-mode conditions.
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Figure 4. (a) Decomposed mode-I and mode-II stress distributionsσ I
11 andσ II

11, original and extrapo-
lated. (b) Numerically calculatedJk-integral, crack face integral calculated within the range
[0, x̂c], comparison of different methods.

In Fig. 4(a) the tangential stressσs
11 on the crack faces is plotted vs. a normalized crack face coordi-

nate ˆxc= (R−xc)/R, with x̂c= 1 at the crack tip and ˆxc= 0 for xc=R. The considered boundary value
problem is that one of a Double Cantilever Bream with dissimilar forcesF1 = 100N andF2 = 99N
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F1

F2

Figure 5. FE-mesh of the grown curved crack shown in a deformed configuration.

acting at the front end leading to a curved crack path, see Fig. 5. The correspondingJk-integral
calculated within the range[0, x̂c] is shown in Fig. 4(b). The functionJk (x̂c) has got nothing to do
with path-dependence but enables to localize the incorrectcontribution to the crack face integral. The
value thatJk reaches approaching the crack tip ˆx1 = 1 is the relevant loading quantity according to
Eqs. (12) and (1). For the sake of comparison, results from the Crack Tip Element (CTE) method
[9, 1] have been included in the figure.
The choice of the parameterδ has an influence on the results. Forδ < δc, not all inaccurate values are
excluded from the numerical integration and therefore the resulting values ofJk are inaccurate. For
δ > δc, the values ofJk obtained by the extrapolation method (Method 2) show littleinfluence. On the
other hand, the values ofJk calculated by the analytic extension method (Method 1) showincreasing
deviation for increasingδ . The research revealed that the best choice ofδc includes the region of the
first three element rings around the crack tip. Both methods are suitable for the accurate calculation
of the coordinateMII

2 as well.

Table 1. Comparison of stress intensity factors calculatedfrom the CTE-method and theMk-integral
considering the actual crack face integral (ACFI) and the fictitious crack face integral (FCFI),
neglecting FCFI only or neglecting both FCFI and ACFI.

CTE Mk Mk without FCFI Mk without FCFI and ACFI
KI/(MPa

√
mm) 240.39 240.31 276.77 261.72

KII /(MPa
√

mm) -2.86 -2.95 -38.38 7.26

Results of SIF calculated from the CTE-method [9, 1] and theMk-integral are presented in Tab. 1. It is
obvious, that neglecting the integration along the fictitious crack faces of the auxiliary fields produces
considerable errors. The same holds, when neglecting both the fictitious crack face integral (FCFI)
and the actual crack face integral (ACFI), as shown in the last column of Tab. 1.

4. Systems of multiple interacting cracks

The loading quantities of multiple crack systems, related to every single crack tip, are calculated
by path independent integrals. With regard to crack tips approaching interfaces such as material
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interfaces, internal boundaries or crack surfaces, it is beneficial to evaluate the integrals along large
contours containing allN tips of a multiple crack system, see Fig. 6(a). For comparison, the crack
paths are simulated by calculating the integral along smallcontours in the vicinity of the crack tip, as
shown in Fig. 6(b). The resulting value of theJk-integral along a large contourΓ0 equals the sum of

−ϕ (1)

ϕ (2)

J(1)k

J(2)k
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Figure 6. Integration contoursΓ0, Γ1, Γ2 for path-independentJk andMk-integral andJk-integral vec-

torsJ(i)k .

the loading quantities of allN crack tips.

J1 =
N

∑
i=1

cosϕ(i)
∣

∣

∣
J(i)k

∣

∣

∣
(19a)

J2 =
N

∑
i=1

sinϕ(i)
∣

∣

∣
J(i)k

∣

∣

∣
(19b)

The angleϕ(i) is related to the global coordinate system ¯xi. The applied crack deflection criterion
is that of themaximum energy release rate, i.e. theJk-vector points into the direction of the crack
propagationzk, see Eq. (4). This and the principle of minimum potential energy lead to the auxiliary
condition, that the sum of the absolute values of theJk-integrals related to every single crack tip,

reaches a global maximum. Further, each absolute valueJ(i)k must be smaller or equal to the value
of the critical energy release rateGc. If another condition is required, in order to reduce the solution
space it can be postulated that the crack deflection angle must be smaller or equal to a maximum
value dϕmax. The latter criterion is motivated by the fact that cracks usually show a smooth curvature
whereas sharp kinks are only observed if the loading regime is subjected to a sudden and fundamental
change.

N

∑
i=1

∣

∣

∣
J(i)k

∣

∣

∣

!
= max (20a)
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∣

∣

∣
J(i)k

∣

∣

∣
≤ Gc (20b)

dϕ ≤ dϕmax (20c)

Developing a separation procedure to determineJ(i)k based on Eqs. (19), this method has to satisfy the
conditions according to Eqs. (20). A numerical validation is achieved by calculating theJk-integral
along small contours around the crack tip, see Fig. 6(b). Theloading quantities calculated by small
contoursΓi must be equal to the values that are calculated by the separation procedure. Here it must
be taken into account that numerical errors dominate, ifΓi is chosen too small, whereas large contours
must not intersect other crack faces or boundaries. In Fig. 7(b) results of a simulation with two cracks
are presented. The plate specimen is exposed to a uniform load P0 = 100MPa and exhibits two non-
symmetric incipient cracks of the lengtha1 = a2 = 5mm. All geometric dimensions are shown in Fig.
7(a). A crack growth simulation with fatigue crack growth rates assumed to be constant and equal for
both cracks, leads to the crack paths as shown in Fig. 7(b).

a1

a2

H
=

10
0m

m
h 1

=
50

m
m

h 2
=

60
m

m

W = 70mm

P0

(a)

P0

(b)

Figure 7. (a) Geometric dimensions of plate specimen exhibiting two non-symmetric incipient cracks.
(b) Crack paths resulting from a crack growth simulation exposing the specimen to a uni-
form loadP0 = 100MPa.

5. Closure

Introducing path-independent integralsJk andMk, the necessity of the calculation of crack face in-
tegrals is outlined. Considering interfaces, internal boundaries or crack surfaces, it is beneficial to
apply large contours including crack face integrals for thecalculation ofJk or Mk. To achieve path-
independence for theMk-integral considering curved crack faces, an integration along the fictitious
crack faces of the corresponding auxiliary fields is nessecary. When calculating the stress intensity
factors or the energy release rate from path independent integrals, it is inevitable to calculate these
integrals accurately. The challenging calculation of the crack face integrals is explained and two new
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methods to calculate accurate values are presented. An analytical extension method and the extrap-
olation of singular stresses and strains on the crack faces provide very good results for straight and
curved cracks.
TheJk-integral is applied to multiple crack systems, calculating a global value ofJk, being the sum of
all local values related to every single crack tip. Auxiliary conditions are introduced to solve a global
minimization problem. A separation procedure enables to calculate loading quantities related to each
crack tip. Based on the specimen in Fig. 7, experiments are about to be carried out, in order to verify
the theoretically predicted crack patterns.
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