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Abstract  Strain gage based methods for experimental determination of stress intensity factors (SIFs) are 
equally powerful as compared to the other methods such as photoelasticity and caustics. However, a major 
problem with the strain gage methods is the lack of practical recommendations for appropriate radial 
locations for strain gages for accurate measurement of SIFs. Determination of valid gage locations is thus an 
open problem. In order to obviate this important problem, a finite element based approach has been 
suggested in the present investigation for determination of valid or optimal strain gage locations for 
determination of the mode I SIFs. The proposed approaches are strongly supported by the theory. The present 
work attempts to estimate the maximum permissible radial distance maxr  for strain gages (from the crack tip) 
using the proposed finite element based approaches. This maxr  of a configuration in turn can be used to 
obtain the valid locations for strain gages for accurate determination of mode I SIFs. The results of the 
present investigation show that very accurate values of maxr  can be obtained using the proposed approach. 
Dependence of maxr  on crack length to width ratio has also been investigated in the present work. 
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1. Introduction 
 
The most important parameter in linear elastic fracture mechanics (LEFM) is the stress intensity 
factor (SIF) as its limiting value decides whether an existing crack in a component grows or not. It 
is a measure of severity of the crack tip and is frequently used in control of fracture and in life 
prediction estimations. Accurate values of SIFs are necessary for correct application of LEFM 
principles in predicting and preventing fracture of the engineering components. Three approaches 
are currently used to estimate stress intensity factors viz., analytical, numerical and experimental 
methods. Analytical methods are generally restricted to the simple configurations and collection of 
such solutions of SIFs can be found in various handbooks [1, 2]. Numerical and experimental 
techniques are widely used in relatively complex situations [3]. 
 
Most widely used experimental techniques for the measurement of SIFs are caustics [4, 5], 
compliance method [6, 7], photoelasticity [8, 9] and strain gage techniques [10-14]. Among the 
experimental techniques, strain gage techniques are relatively simple and easy for the determination 
of SIFs due to direct measurement of strains near the crack tip. Irwin [15] first suggested the use of 
strain gages for the determination of SIF. However, factors such as the local yielding, high strain 
gradients, three dimensional state of stress at the crack tips and finite size of the gages strongly 
affected against the development of strain gage techniques. 
 
To eliminate the above difficulties, Dally and Sanford [10] developed a practically feasible strain 

gage technique (DS technique) for measuring the static mode I SIF  )( IK  in two dimensional 
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isotropic single ended cracked bodies. A truncated strain series (based on the generalized 
Westergaard approach [16]) consisting of three unknown coefficients for the representation of the 
strains has been employed in their technique. A major advantage of their approach is that, only a 
single strain gage is sufficient to determine mode I SIF and it can be located at a distance 
sufficiently away from the crack tip. However, no suggestions were made by them on the valid gage 
locations. 
 
Wei and Zhao [11] proposed a different strain gage method based on the two parameter strain 
equation which requires two strain gages for measuring the mode I SIF. However, the suggested 
radial locations of gages necessitate a priori knowledge about the plastic zone size which depends 
on the unknown SIF. 
 
Kuang and Chen [12] employed the asymptotic strain expressions for the measurement of mode I 
SIF. They suggested that gages could be placed at distances greater than half the thickness of the 
specimen from the crack tip in spite of the fact that at large distances the measured strains could not 
be accurately represented by asymptotic equations alone. 
 
It could be seen from the literature that DS technique has been more widely used as compared to 
other strain gage techniques. While there are some recommendations available for radial locations 
of strain gage techniques developed by Wei and Zhao [11] and Kuang and Chen [12], no method 
has been presented until recently for determination of appropriate radial location of strain gages 
corresponding to the DS technique in experimental determination of the mode I SIFs. Due to 
uncertainty over the radial location of strain gage in DS technique, very limited amount of work has 
been published using this technique for corroborating the analytical or numerical SIFs [14]. 
Determination of valid gage locations for DS technique is thus an open problem.  
 
The present paper aims at development of an efficient finite element based approach for accurate 

and consistent evaluation of the maximum permissible radial distance maxr  for strain gages (from 

the crack tip) for accurate measurement of mode I SIFs in configurations with single ended cracks. 

This maxr  of a configuration in turn can be used to obtain the valid locations for strain gages for 

accurate determination of mode I SIFs. Another objective of the present work is to study the 

dependence of maxr  on crack length to width ratio of a given configuration. The proposed 

numerical methodology is well supported with theory.  
 
2. Theoretical Background 
 
This section describes the background theory for the estimation of maxr  value for accurate 

measurement of mode I SIF using Dally and Sanford [10] single strain gage technique. According to 
this technique the region around a crack tip is divided into three zones viz. zone I, zone II and zone 
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III as shown in Fig. 1. Zone I is close to the crack tip and first term of the strain series (singular 
term) is sufficient to represent the strains within this zone. However, it is not a valid zone for 
accurate measurement of strains as the stress state in this region is three dimensional [10, 17] and 
the measured strains will be severely affected by plasticity effects. 
 
Zone III is again not suitable for measurement of strain data because, very large number of terms in 
the strain series is required to yield accurate results. Therefore, the intermediate region or zone II is 
favorable and optimum zone for accurate measurement of the surface strains. This is defined as a 
zone in which a singular term and a small number of higher order terms will accurately describe the 
strain field. 
 

 
Figure 1. Different zones at the crack tip 

 
The generalized Westergaard approach can be employed to obtain the expressions of different strain 
components within the zone II. The modified Airy stress function in this approach is given by [16] 

  Re ( ) Im ( ) Im ( )Z z y Z z y Y zφ = + +  (1) 

where 
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which are series type functions (in terms of complex variable z x iy= + ) containing infinite number 

of coefficients ( 1 2 1 2, ,..., ; , ,...,A A A B B B∞ ∞ ). The strain field in the zone II can be sufficiently 

represented by the three parameter series with unknown coefficients 0A , 1A  and 0B  [10] which 

depend on boundary conditions. Assuming plane stress conditions, the three term representation of 
strain field in this zone is therefore, 
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where (1 ) /(1 )κ ν ν= − +  and 0A , 1A  and 0B  are unknown coefficients which can be 

determined using geometry of the specimen and loading conditions. Using the definition of IK  it 

can be shown that 

  02IK A= π  (6) 

The strain component aaε at the point P located by r  and θ  (Fig. 2) is given by 
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Figure 2. Strain gage orientation and location 

 

The coefficient of 0B  term in Eq. (7) can be eliminated by selecting the angle α  such that 

  cos2α κ= −  1
1

ν
ν

−
= −

+
 (8) 

Similarly coefficient of 1A  can also be made zero if the angle θ  is selected as 

  tan cot 2
2
θ α= −  (9) 

Thus by placing a single strain gage (Fig. 2) with α  and θ  as defined by Eqs. (8) and (9)  the 
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strain aaε  can be measured which in turn is related to IK  by 

  1 3 1 32 cos sin sin cos 2 sin cos sin 2
2 2 2 2 22aa

KG
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 (10) 

It should be noted that the above equation accurately determines aaε  upto a radial distance say 

maxr  and it can be written as 
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For a given configuration, applied load, Young’s modulus E  and Poisson’s ratio ν  the 
expression within the square bracket on the right hand side of Eq. (11) is a constant. Therefore, 

  aa
C
r

ε =  (12) 

where C  is a constant. Taking logarithm on both sides of Eq. (12) 

  ( ) ( )1ln ( ) ln ln
2aa r Cε =− +  (13) 

Eq. (13) is valid along the line given by Eq. (9) for maxr r≤ . Thus a plot of Eq. (12) on log-log axes 

depicts a straight line of slope equals to – 0.5, with an intercept of ( )ln C . Theoretically, the 

straight line property will break beyond maxr r>  as more than three parameters are needed in Eq. (7) 

to estimate the aaε  . Using the straight line property exhibited by Eq. (13), the value of maxr  can 

be accurately estimated from the log-log plots of aaε  and r . 

 
Several experimental and numerical studies have established that 3D effects prevailed up to a radial 
distance equal to half the thickness of the plate from the crack tip [17]. It was reported that the state 
of stress is neither plane stress or plane strain within this distance [10, 17]. Therefore, the minimum 

radial distance minr  for strain measurements on the free surface should be grater than half the 

thickness of the plate. As a consequence, the optimal or valid radial location r  for strain gage in 
DS technique can now be given as  

  min max
1( thickness of plate)
2

r r r= ≤ ≤  (14) 
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3. Results and Discussion 
 

In this section, maxr  is determined for a single-ended cracked plate using the theoretical 

formulation described in Section 2. For this purpose, edge cracked plates (Fig. 3(a)) with 
/ 0.1 0.8a b= −  (in steps 0.1) and subjected to uniform tensile stress are considered in this study. 

Due to symmetry only half of the domain as shown in Fig. 3(b) is employed for FEA. Width 
1200mmb =  and / 3.0h b =  are considered for this example. Poisson’s ratio 1/ 3ν = , and 

Young’s modulus 200GPaE =  have been assumed. The applied stress σ  is set to 100 MPa.  
Plane stress conditions have been assumed.  

 
Figure 3. (a) A typical edge cracked plate (b) solution domain for edge cracked plate 

 

To determine the maxr  value of the above configurations, a typical finite element mesh for one half of 

the plate is shown in Fig. 4 (a). The mesh (Fig. 4(a)) is so designed that nodes of several elements are 
made to lie along the gage line which makes an angle of  θ  with the axis of crack (Eq. 9). In all the 
meshes, this line (gage line) begins at the crack tip and terminates at the outer boundaries of the 
cracked plate. According to DS technique, a single strain gage is required to be placed at an 
appropriate location on the gage line in the direction of α  (Eq. 8) in order to measure the linear 

strain aaε . The strains calculated in global coordinate along the gage line are then transformed into 

linear strain aaε  in the direction α . The radial distances ( )r  of each of the nodes on the gage line 

from the crack tip are then computed. 
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Figure 4. (a) Typical mesh used for edge cracked plate (b) enlarged view at the crack tip corresponding mesh 
 

Following the procedure described in section 2, plot of ( )ln aaε  versus ( )ln r  for all values of 

/a b  is shown in Fig. 5. Crack tip point is not plotted as the radius of this point is zero. It is 
interesting to notice from Fig. 5 that, each plot consists of distinguishable linear portion followed by 
nonlinear portion (in logarithmic scale) as predicted by theory (section 2). The linear trend 
distinctly exists up to a certain radial distance and thereafter gradually turns to the nonlinear portion. 
This can be observed in plots for all values of /a b  of edge cracked plate. 
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Figure 5. Variation of ln( )aaε  with ( )ln r  along the gage line for the edge cracked plates 
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As discussed earlier, the initial linear part is due to the dominance of the three parameters and 
nonlinear part is due to the presence of more than three parameters in the expression in equation for 

aaε  (Eq. 7). The end point of the linear portion of the plots in Fig. 5 clearly indicates the extent of 

the three parameter strain series which is the upper bound for strain gage locations i.e. maxr  

according to the proposed theory.  
 

For determination of max ,r  straight lines having slope of -0.5 are superposed onto the all plots of 

ln( )aaε  versus ln( )r  in Fig. 5. It is interesting to notice from Fig. 5 that both the initial straight 

line portion of the plots and superposed lines are congruent to each other up to a certain radial 
distance for all /a b  values and the numerical results deviate from the superposed line thereafter 

due to the dominance of coefficients other than 0, 1A A  and 0B  in Eq. (7). The estimated values of 

maximum permissible radial distance maxr  or the extent of validity of the three parameter zone are 

marked in Fig. 5 as per the procedure described in [18]. The corresponding numerical values of the 

maxr  are presented in Table 1. A plot of variation of  maxr  with /a b  is also presented in Fig. 6. 

  
It can be seen from the results of Table 1 and Fig. 6 that as the crack length is increased, the value 

of maxr  increases initially until it reaches a maximum value around / 0.5a b =  ( maxr  = 505.34 mm) 

and thereafter it decreases with the increase of the crack length. 
 

Table 1 Variation of the maxr  with crack length /a b  

/a b  a  
(mm) max /r b  

0.1 120 0.021 
0.2 240 0.043 
0.3 360 0.077 
0.4 480 0.174 
0.5 600 0.290 
0.6 720 0.101 
0.7 840 0.040 
0.8 960 0.015 
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 Figure 6. Graph of the maxr  as a function of /a b  (0.1-0.8) for the edge cracked plate. 

 
4. Conclusions 
 
In this paper, a finite element based approach is presented for determination of the valid or optimal 
radial location of strain gages corresponding to DS technique. The proposed approach is based on 

efficient computation of the maximum permissible radial distance maxr  of a strain gage. The 

existence and determination of the maxr  is shown theoretically. To demonstrate the proposed 

approach single ended cracked configurations have been analyzed. Variation of the computed 
strains in the direction of strain gage along the gage line is as per the theoretical predictions. The 

results of present investigation show that the maximum permissible radial distance ( maxr ) increases 

initially with the increase in /a b  and decreases with further increase in /a b  values. The present 
method will be extremely useful in placing strain gages for accurate experimental determination of 
the SIF using DS technique. 
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