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Abstract  Subcritical fracture driven by thermally activated crack nucleation is studied in the 
framework of a fiber bundle model. Based on analytic calculations and computer simulations, we 
show that, in the presence of stress inhomogeneity thermally activated cracking results in an 
anomalous size effect, i.e., the average lifetime of the system decreases as a power-law of the 
system size. We propose a modified Arrhenius law which provides a comprehensive description of 
the load, temperature, and size dependence of the lifetime of the system. On the microscopic level, 
thermal fluctuations trigger bursts of breaking events which proved to have a power-law size 
distribution. The waiting times between consecutive bursts are also power-law distributed with an 
exponent switching between 1 and 2 as the load and temperature are varied. Analyzing the structural 
entropy and the location of consecutive bursts, we show that, in the presence of stress concentration, 
the acceleration of the rupture process close to failure is the consequence of damage localization. 
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1. Introduction 
 
Sub-critical rupture, occurring under a constant load below the fracture strength of materials, is of 
fundamental importance in a wide range of physical, biological, and geological systems. Depending 
on the type of materials, creep rupture can have a wide variety of microscopic origins from the 
existence of frictional interfaces through the viscoelasticity of the constituents, to thermally 
activated aging processes. Recent experimental and theoretical investigations revealed the high 
importance of thermally activated micro-crack nucleation in creep phenomena with consequences 
reaching even to geological scales [1–7]. Under creep loading failure often occurs as a sudden 
unexpected event following a short acceleration period which addresses safety problems for e.g. 
components of engineering constructions. Additionally, creep rupture underlies natural catastrophes 
such as landslides, stone and snow avalanches and it is also involved in the emergence of 
earthquakes. 
 
On the macroscopic scale the rupture process is characterized by the strain-time diagram and by the 
lifetime of the system, which both have a complex dependence on the external load and on the 
temperature. In spite of the smooth macroscopic evolution, thermally activated breakdown proceeds 
in bursts on the microscopic scale. They may be exploited to gain information about the approach of 
the system to failure. In the present paper we investigate this problem in the framework of a fiber 
bundle model of thermally activated breakdown. In order to reveal the effect of the range of load 
redistribution we carry out computer simulations considering strongly localized stress redistribution 
after failure events and compare the outcomes to the analytic results obtained in the mean field limit 
[10–12]. 
 
2. Model 
 
Our approach is based on the fiber bundle model (FBM), which has proven very successful during 
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the past decades for the investigation of fracture phenomena [1–15]. In the model we consider N  
parallel fibers having a brittle response with identical Young modulus E . The bundle is subject to a 
constant external stress σ  parallel to the fibers' direction. During the past decades several ways 
have been proposed to introduce time dependent rupture in stochastic fracture models. Following 
the pioneering works of Coleman on time dependent FBM [5], the models were further extended to 
a broad class of time dependent damage accumulation laws and fiber strength by Phoenix and 
Curtin [6–8]. In our work we apply the approach of Guarino et al. [1–4], i.e. we assume that the 
local load iσ  of fibers has time-dependent fluctuations )(tiξ  due to the presence of thermal noise 
so that the actual load of fiber i  at time t  reads as 
 )()()( 0 ttt iii ξσσ += . (1) 
Here )(0 tiσ denotes the deterministic part of the stress, i.e., the local stress arising due to the external 
load and to load transfer following breaking events. The fibers have a finite strength characterized 
by a failure threshold i

thσ , which is, in general, a random variable. A fiber fails during the time 
evolution of the bundle when the total load on it )(tiσ  exceeds the respective threshold value i

thσ . 
For simplicity, we assume that the system consists of homogeneous fibers, i.e. all the breaking 
thresholds are the same Nith

i
th ,,1, Κ==σσ , where 1=thσ  is set. The assumption of homogeneity 

implies that there is no quenched disorder in the system. Thermally induced stress fluctuations 
)(tξ  have a Gaussian distribution with zero mean and a variance controlled by the temperature T  

of the system 
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from which the complementary cumulative distribution follows as ∫
+∞

=
ξ

ξ dxxpP )()( . The strength of 

thermal fluctuations is controlled by the value of T which can be scaled to the absolute temperature 
of the system. After fiber breakings, the load of broken fibers has to be redistributed over the 
remaining intact ones. In order to understand the effect of the range of load transfer on the process 
of thermally enhanced creep, we consider two limiting cases for the load redistribution: in the case 
of equal load sharing (ELS) all surviving fibers overtake equal fraction of the load. ELS ensures 
that the stress distribution remains homogenous in the bundle until the end of time evolution which 
also facilitates to perform analytical calculations. To study the effect of stress inhomogeneity on 
thermally activated breakdown, in our model the fibers are organized on a square lattice of size 

LL× and localized load sharing (LLS) is considered: the load of broken fibers is redistributed over 
their nearest intact neighbors, giving rise to high stress concentration around failed regions.  Since 
the LLS case cannot be investigated by analytical means, computer simulations were carried out 
varying the loadσ , temperatureT , and the lattice size L  in broad ranges. 
 
3. Results and Discussions 
 
Subjecting the bundle to a constant external loadσ , two competing physical mechanisms contribute 
to the failure of fibers: When the load is small enough even a single fiber can sustain the entire load 
and the load increments arising in the vicinity of failed fibers are not sufficient to trigger further 
breakings. Hence, in this load regime, the failure process is dominated by the thermal fluctuations 
and there is practically no difference between ELS and LLS calculations since the range of 
interaction is irrelevant. However, at high load values thσσ → , the load redistributions give rise to 
considerable increments of the local load on intact fibers leading to additional breakings. In the 
initial state of the system all the fibers have the same load Nii ,,1,0 Κ== σσ . When a fiber breaks 
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due to thermal noise thii σξσ ≥+0 , the deterministic part of the load 0
iσ is transferred to its four 

intact neighbors resulting in the increment 4/0 σσ =Δ . If the updated load exceeds the breaking 
threshold th>4/5 σσ the fibers break again transferring the load further to their intact neighbors. 
Once this breaking sequence starts, removing all four neighbors of the initial one, it does not stop 
until all fibers break leading to macroscopic fracture. It follows that due to the localized stress 
transfer, the system has a critical load 5/4 thσσ =c  above which even a single fiber breaking 
triggers the immediate collapse [10–12]. 
 
3.1. Scaling behavior of lifetime 
 
The most important macroscopic characteristic quantity of the system is the average lifetime ft  
which has a finite value even at zero external stress 0=σ  in the model if the temperature is 
finite 0>T . Under the assumption of equal load sharing it has been shown analytically in FBMs 
with a fixed breaking threshold thσ  that ft follows the Arrhenius law 

( ) ( )( )TTt thf 2/exp/2 2σσσπ −∝  without any dependence on the system size N [1,2]. 
 

 
Figure 1. (a) Scaling plot of lifetime ft  obtained at different load σ  and temperatureT values 
by LLS simulations on a square lattice of size 1024=L . No data collapse is obtained. The simple 

Arrhenius law is indicated by the straight line of ELS. (b) Size scaling of lifetime. When stress 
concentration is dominated, power-law dependence is obtained with a high precision. Note 

that 8.0=cσ  in the model. (c) Correcting the Arrhenius scaling form with the size dependence of 
lifetime a high quality data collapse is obtained. 

 
Figure 1(a) presents the scaling plot of lifetime obtained by our computer simulations with the LLS 
FBM at the system size 1024=L  varying the load σ  and the temperatureT . No data collapse is 
obtained in the figure, which implies that the simple Arrhenius law does not hold when stress 
concentrations are present [10]. Our analytical and numerical calculations revealed that the 
interplay of stress concentrations and annealed disorder results in an anomalous size effect of the 
lifetime of the system, which is responsible for the discrepancy observed above [10]. In order to 
clarify the size scaling of the lifetime we carried out computer simulations varying the system size 
in a broad range 32=L – 2048. These simulations showed that at any finite load value σ  the 
average lifetime of the system decreases as a power law of the lattice size ),( σTz

f Lt −∝ . See Fig. 

1(b). For the limiting cases of low ( 0→σ ) and high ( cσσ → ) loads the exponent z can be obtained 
analytically to be 0 and 2, respectively. Numerical calculations showed that varying the temperature 
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and external load the scaling exponent z takes values between the two limits 2),(0 ≤≤ σTz [10]. 
We propose a modified form of the Arrhenius law which takes into account the size scaling of 
lifetime 
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Figure 1(c) demonstrates that the modified Arrhenius law provides an excellent scaling of the 
numerical data obtained by computer simulations of LLS FBM varying the system size L , the 
temperature T , and the external load σ  in the ranges 32=L – 2048 , 001.0=T – 1.0 , and 

510−=σ – 8.0 , respectively. 
 
3.2. Microscopic time evolution 
 
On the microscopic level, the fibers primarily break due to thermal fluctuations when their actual 
load exceeds the fixed breaking threshold thi t σσ >)( . Of course, depending on the temperature in a 
given time step more than one fiber can break at the same time. The load of broken fibers is then 
redistributed over the intact ones according to the selected load sharing rule. The load increments on 
intact fibers can trigger additional breakings and eventually generate an entire breaking burst. 
Hence, irrespective of the range of load sharing, the failure of the bundle proceeds in bursts which 
are separated by silent periods with no breakings. The size of the burst Δ  is simply the number of 
fibers breaking in a correlated trail of failure events, while the waiting time wt  is defined as the 
number of iteration steps without breaking events between two consecutive avalanches. 
 

 
Figure 2. Size distribution of bursts for ELS (a) and LLS (b), and that of waiting time for ELS (c) 

and LLS (d). Power law functional forms are obtained followed by an exponential cutoff. 
 
Bursts of breaking events generate acoustic waves so that they are responsible for the crackling 
noise accompanying the process of creep rupture [3]. In order to characterize the statistics of 
crackling events of our model, we analyzed the probability distribution of burst sizes )(ΔP and 
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waiting times )( wtP . For the ELS case the burst size distribution )(ΔP proved to have a power law 
functional form α−Δ∝Δ)(P with an exponential cutoff. See Fig. 2(a). The value of the exponent has 
a complex dependence on the load and temperature [10]. For localized load sharing computer 
simulations revealed that )(ΔP has a Gaussian form for small bursts followed by a power law 
regime over a broad range. See Fig. 2(b). It is important to emphasize that the power law exponent 
α of the LLS case does not vary continuously with the model parameters. Instead, it suddenly 
switches from 1=α  to 2=α when the external load approaches the critical value cσσ → , which 
is accompanied by the shrinking of the Gaussian regime. In the vicinity of cσ , the system becomes 
very sensitive to the thermal fluctuations and cannot tolerate large bursts, which is expressed by the 
higher value of the exponent α  (Figs. 2(a) and (b)). This is an important unique feature of 
thermally driven creep rupture; when quenched disorder dominates the rupture process the opposite 
effect occurs, i.e. the burst exponent decreases when approaching catastrophic failure [13–15]. The 
probability distribution of waiting times )( wtP shows the same qualitative behavior as the 
distribution of burst sizes, i.e. )( wtP  has a power law functional form β−∝ ww ttP )( with an 
exponential cutoff, where the value of the exponent β depends both on the load and on the 
temperature [12]. See Figs. (c) and (d) 
 
3.2. Acceleration due to localization 
 
The overall time evolution of the rupture process can be characterized by studying the average 
waiting time wt between consecutive bursts as a function of the fraction of broken fibers φ , 

where 10 ≤≤φ holds. For ELS )(φwt can be cast into a closed analytical form, while for LLS we 
determined it numerically [12]. Calculations showed that at zero load the breaking process 
continuously slows down in such a way that the average waiting time has a power law divergence 

1)1( −−∝ φwt when approaching macroscopic failure 1→φ . It can be observed in Fig. 3(a) that for 
finite load values 0>σ the slow-down is followed by acceleration such that the accelerating 
regime starts earlier when the load increases. It is interesting to note that when the load is high 
enough, acceleration is obtained right from the beginning of the process, i.e. in this parameter 
regime the rupture process continuously accelerates towards failure [12]. The most remarkable 
feature of the results is that in the case localized load sharing the qualitative behavior remains the 
same, however, the acceleration sets on earlier (see Fig. 3(a)). 
 

 
Figure 3. (a) Average waiting time for ELS and LLS as function of the fraction of broken fibers φ . 
(b) Comparison of the curves of average waiting time and entropy as a function ofφ . For LLS the 
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entropy starts to decrease when the acceleration sets on. 
 
In order to understand the background of early acceleration for LLS systems, Figs. 4(a)–(d) presents 
snapshots of the time evolution of an LLS bundle. Two regimes can easily be distinguished: at the 
beginning of the process cracks occur randomly all over the bundle (Fig. 4(a)). As time elapses 
more cracks nucleate and some of the previous cracks extend their size (Fig. 4(b)). Along the 
perimeter of growing cracks large stress is concentrated on the intact fibers, which increases the 
probability of further crack growth. As a consequence, one of the cracks gets selected and starts to 
grow rapidly, i.e. all bursts get localized along the front of a growing crack which then accelerates 
the process and leads to global failure (Figs. 4(c) and (d)) [12]. To quantify the degree of 
localization we introduced a so-called structural entropy S , which measures how scattered the new 
breaking events are in the bundle [12]. Large value of the entropy 1→S implies random cracking, 
while the small one 0→S marks the onset of localization. It can be observed in Fig. 3(b) that in the 
ELS case where there is no stress concentration and spatial correlation in the system the entropy is 
always high 8.0≈S , even during the acceleration phase. 
 

 
Figure 4. Snapshots of an evolving system, where fibers are colored according to their load. Deep 

blue represents zero load hence indicating cracks in the system. 
 
On the contrary, in the presence of stress concentration, the entropy is high during the slow-down 
phase, however, it rapidly decreases to zero as soon as acceleration sets on (see Fig. 3(b)). Our 
results give a quantitative proof that the acceleration towards failure occurs due to the spatial 
localization of breaking events to the front of a growing crack [12]. 
 
4. Conclusions 
 
Based on a fiber bundle model we showed that stress inhomogeneity play a crucial role in the 
process of thermally activated subcritical rupture giving rise to a broad spectrum of novel behaviors. 
Stress concentrations, arising in the vicinity of failed regions of the material, make the system more 
sensitive to thermal fluctuations. As a consequence, an astonishing size effect emerges where the 
average time-to-failure of the model system decreases as a power law of the system size. The size 
scaling exponent depends both on the temperature and on the external load. We proposed a 
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modified form of the Arrhenius law of lifetime which provides a comprehensive description of 
thermally activated breakdown phenomena [10–12]. 
 
On the micro-level, thermally driven breakdown proceeds in bursts of breakings which are 
separated by waiting times. The size distribution of bursts and the distribution of waiting times 
between consecutive events proved to have power law functional forms followed by an exponential 
cutoff. The power law exponents have a complex dependence on the load and temperature of the 
system [10,12]. To characterize the overall time evolution of the system, we analyzed the average 
waiting time between bursts as a function of the fraction of broken fibers. Calculations showed that 
the thermally induced creep process has two phases: at low loads and high temperatures the process 
slows down after the load is set, which is then followed by an accelerating period. However, when 
the load is high enough the system continuously accelerates towards failure. We demonstrated that 
in the case of localized load sharing, the stress concentration around cracks leads to spatial 
correlation of breaking events and to an enhanced breaking probability which in turn is responsible 
for the early acceleration [10–12]. 
 
In order to quantify the effect of spatial correlation on the time evolution of the creep rupture 
process, we evaluated the structural entropy of avalanches and their consecutive positioning. As a 
very important outcome, our calculations revealed that the decreasing extension and the spatial 
localization of avalanches to a bounded region of the specimen are responsible for the acceleration 
towards macroscopic failure. Final failure is driven by a single growing crack which becomes 
unstable as the avalanches localize to its perimeter [12]. 
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