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Abstract  To obtain a theoretical solution for the critical condition of swell-induced surface instability, a 
graded hydrogel layer on a rigid substrate is divided into n fictitious sub-layers. By considering the boundary 
condition and interface continuity, a governing equation for surface instability is established. Hydrogel layers 
with the crosslink density varying in the thickness direction are examined in details. The results show that 
both the critical condition and the instability mode relate to the variation of the material properties. For a 
soft-on-hard graded layer, the onset of surface instability is determined by a short-wave mode with a limiting 
short wavelength. In contrast, for a hard-on-soft graded layer, a long-wave mode with a finite wavelength 
emerges as the critical mode at the onset of surface instability. The critical swelling ratio of the long-wave 
mode for hard-on-soft graded layers is considerably lower than that of the short-wave limit for soft-on-hard 
ones with the same shape factor. In addition, we found that both the critical swelling ratio and the 
characteristic wavelength depend on the gradient profile of material properties. 
 
Keywords  Hydrogel, Surface instability, Graded layer 
 
1. Introduction 
 
A hydrogel swells significantly when imbibing a large amount of solvent. Swell-induced surface 
instability of hydrogels has been observed by many researchers[1-6], and a lot of theoretical and 
numerical studies have also been reported[7-12]. Most of the theoretical studies to date have assumed 
the hydrogel to be homogeneous before swelling. Recently, a series of experiments by Guvendiren 
et al.[7,13,14] have observed a rich variety of surface patterns (including creases and wrinkles) by 
using hydrogels with depth-wise crosslink gradients. It was found that both the critical condition 
and the characteristic length scale of the surface patterns depended on the crosslink gradient. 
Motivated by these experiments, we present a theoretical analysis on swell-induced surface 
instability of graded hydrogel layers, i.e., the layer with material properties varying in the thickness 
direction. 
 
The critical condition for the onset of swell-induced surface instability in hydrogels has become an 
interesting subject of theoretical studies recently. By an energetic consideration, Hong et al.[7] 
predicted a critical strain for surface creasing of an elastomer. More recently, Cao and Hutchinson[12] 
found that surface wrinkling in an elastomer is highly unstable and extremely sensitive to 
imperfections that could significantly reduce the critical strain. For a hydrogel layer on a rigid 
substrate, the critical condition for swell-induced surface instability is similar to the elastomers 
under compression, but with subtle differences due to the interaction between solvent and the 
polymer network. Following a procedure similar to Biot’s linear perturbation analysis, Kang and 
Huang[9] predicted that the critical swelling ratio for wrinkling instability of a hydrogel layer varies 
over a wide range, depending on the material parameters. 
 
The theoretical studies predict no characteristic length scale for the surface instability in 
homogeneous elastomers and hydrogels. By considering the effect of surface tension, Kang and 
Huang[10] predicted a characteristic wrinkle wavelength that scales almost linearly with the 
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thickness of the hydrogel layer. Alternatively, a characteristic length scale may be introduced by 
assuming a thin skin layer at the surface of the hydrogel[15] or more generally, by assuming a 
gradient of the material properties in the thickness direction. In this paper, by dividing a layer into 
fictitious sub-layers, we present theoretical results for the stability analysis for swelling of graded 
hydrogel layers. The results suggest that both the critical condition and the characteristic 
wavelength depend sensitively on the depth-wise variation of the material properties in the hydrogel 
layer. 
 
2. Theory of confined homogeneous hydrogel layers 

 
In this section we briefly review the homogeneously swelling and a linear perturbation analysis for 
confined hydrogel layers[9,16,17]. 
 
2.1. Constrained swelling 
 

   
(a)                                       (b) 

Fig. 1. Schematic of a hydrogel layer on a substrate: (a) a homogeneous swollen state; (b) a perturbation to 
the swollen state. 
 
A homogeneous hydrogel layer is attached to a rigid substrate as shown in Fig. 1a. Since confined 
to the substrate, the hydrogel will swell only in the thickness direction with the thickness varying 
from H (at dry state) to h (at the swollen state). In the equilibrium state, the swelling ratio 

Hhh /=λ  can be obtained as a function of the chemical potential ( μ̂ ) of external solvent in the 
following form[9]: 
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where ΩN  and χ  are two dimensionless parameters for material properties of the hydrogel, N 
represents the effective number of polymer chains per unit volume of the polymer network at the 
dry state, Ω  is the volume per solvent molecule, χ  reflects the interaction between the solvent 
molecules and the polymer, μ̂  is commonly a function of the temperature (T) and pressure (p), k 
the Boltzmann constant. Assuming an ideal gas phase ( 0pp < ) and an incompressible liquid phase 
( 0pp > ), the external chemical potential is given by 
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where 0p  is the equilibrium vapor pressure of the solvent. 
 
2.2. Linear perturbation fields 
 
For a linear stability analysis, a two dimensional perturbation is assumed as small displacements 
added to the swollen state of the confined hydrogel layer (Fig. 1b), namely 
 ),( 2111 xxuu =  and ),( 2122 xxuu = . (3) 
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The nominal stresses are obtained by the partial differentiation of the free energy with respect to the 
deformation gradient components as 
 iJiJhhiJiJ pHHFNkTs −−−≈ ])(~[ εξλ  (4) 
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Assume the perturbation displacements to be periodic in the 1x  direction, taking the form: 
 1211 sin)( xxUu ω=  and 1222 cos)( xxUu ω= , (5) 
where ω  is the wave number. Applying Eq. (5) to Eq. (4) and then inserting it to the mechanical 
equilibrium equation 
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the equilibrium equation is finally derived as follows: 
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And the perturbation displacement field can be solved from Eqs. (7) and (8) as 
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3. A model of graded hydrogel layers 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 2. Schematic of a graded hydrogel layer: (a) the dry state; (b) a transversely homogeneous swollen state; 
(c) a perturbation to the swollen state. 
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Consider a confined graded hydrogel layer as shown in Fig. 2. Set a Cartesian coordinate system in 
the dry state so that X1 and X3 are along the interface and X2 in the thickness direction (Fig. 2a). 
Now we divide the layer into n fictitious sub-layers, each of which may have different thickness and 
different material properties. When n approaches infinity, the thicknesses of the sub-layers approach 
zero uniformly and also the laminated layers approach graded layer. 
 
For the i th sub-layer considered as a homogeneous layer, the perturbation displacements (Fig. 2c) 
are in the form as Eqs. (9) and (10), i.e., 
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For the laminated layers, in addition to the boundary conditions, namely 
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the perturbation displacements and the associated tractions must be continuous along the interface 
of any two adjacent sub-layers, namely 
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where jhj hhhx +++= Κ21 (j = 1, 2, …, n–1). Substituting Eqs. (11) and (12) into Eqs. (13)-(16) 

yields 4n linear homogeneous equations with respect to the coefficients )(i
mA  ( 4~1=m , ni ~1= ), 

which can be written in a matrix form: 
 0DΑ = , (17) 
where D  is a nn 44 ×  matrix. 
 
The critical condition for onset of the surface instability in the graded hydrogel layer is then 
obtained by setting the determinant of the matrix D  equal to zero, namely  
 0) , , ; ,()det( == iii kNHf χΩμωD . (18) 
 
For each normalized wave number ( Hω ), we solve Eq. (18) to find the critical chemical potential 

cμ , which depends on the material properties of sub-layer ( ΩiN , iχ ) as well as its volume fraction 
HHk ii /= . The swelling ratio of each sub-layer at the critical chemical potential, )( cμλhi , is then 

calculated from Eq. (1). Subsequently, the general critical swelling ratio for the graded layer can be 
calculated from 

 ∑
=

==
n

i
hiikHh

1
c / λλ . (19) 

 
4. Results and discussion 
 
In this section, we apply the approach developed in the previous section to present the analytical 
results for the critical condition of surface instability for both hydrogel bilayers and graded hydrogel 
layers, and the effects of material properties are discussed as well. 
 
4.1. Hydrogel bilayer instability 
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Fig. 3a plots the critical chemical potential as a function of the perturbation wave number for two 
bilayers (A and B), in comparison with a homogeneous layer. The corresponding critical swelling 
ratios are plotted in Fig. 3b. For the bilayers, the critical chemical potential varies with the 
perturbation wave number non-monotonically. If the top layer is softer than the underlayer 
( 12 NN < ), the critical chemical potential has a local minimum *

cμ , corresponding to a long-wave 
mode ( *ωω = ). The local minimum *

cμ  however is greater than the critical chemical potential at 
the short-wave limit (ω → ∞), i.e., ∞> c

*
c μμ . Therefore, the onset of surface instability for such a 

bilayer (soft-on-hard) is expected to be determined by the short-wave limit. On the other hand, if 
the top layer is stiffer than the underlayer ( 12 NN > ), the minimum critical chemical potential 
occurs at a long-wave mode and is lower than the short-wave limit, i.e., ∞< c

*
c μμ . Consequently, 

the critical condition for onset of surface instability for such a bilayer (hard-on-soft) is determined 
by a critical long-wave mode, with a characteristic length ( ** /2 ωπ=L ). In this case, the critical 
chemical potential for long-wave mode and the corresponding critical swelling ratio are 
considerably lower than that for a homogeneous layer. 
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(a)                                  (b) 

Fig. 3. (a) Critical chemical potential and (b) the corresponding swelling ratio versus the perturbation wave 
number for two hydrogel bilayers (A: N2Ω = 4×10-4; B: N2Ω = 2×10-3), both with N1Ω = 10-3 and 9.01 =k , 
in comparison with a homogeneous hydrogel layer (NΩ = 10-3). 
 
To highlight the distinct surface instability behaviors for the soft-on-hard and hard-on-soft hydrogel 
bilayers, a nonlinear finite element method developed previously[8] is used to simulate 
swell-induced deformation and evolution of surface instability of the hydrogel bilayers, as shown in 
Fig. 4. The two models are identical in geometry, mesh, initial surface perturbation, boundary 
conditions, and volume fraction 9.01 =k . The common material properties are: 3

1 10−=ΩN  and 
4.021 == χχ . The soft-on-hard bilayer, with 4

2 104 −×=ΩN , develops multiple surface creases 
without appreciable wrinkling (Fig. 4a and 4b), similar to that of a homogeneous layer[9]. For the 
hard-on-soft bilayer, with 2

2 10−=ΩN , the behavior is drastically different: the wrinkles grow 
significantly before creases form (Fig. 4c and 4d). The critical chemical potential or the critical 
swelling ratio for the onset of surface wrinkling in the hard-on-soft bilayer is considerably lower 
than that for surface creasing in the soft-on-hard bilayer. 
 
Therefore, the two types of hydrogel bilayers (soft-on-hard vs hard-on-soft) exhibit distinct 
behavior at the onset of surface instability: for the soft-on-hard bilayer, with no characteristic length, 
surface wrinkling is highly unstable and is likely to collapse into creases; for the hard-on-soft 
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bilayer, surface wrinkling is stable with a finite wavelength. 
 

   
(a)                                  (b) 

   
(c)                                  (d) 

Fig. 4. Numerical simulations of swell-induced surface instability. (a) and (b): =kT/μ -1.158 and -0.004 
for a soft-on-hard bilayer (N1Ω = 10-3 and N2Ω = 4×10-4); (c) and (d): =kT/μ -1.158 and -0.1513 for a 
hard-on-soft bilayer (N1Ω = 10-3 and N2Ω = 10-2). 
 
4.2. Graded hydrogel layer instability 
 
To illustrate the effect of material parameters varying in the thickness direction on surface stability, 
we consider a graded hydrogel layer with linearly or exponential graded crosslink density. Since the 
effective number of polymer chains per unit volume is proportional to the crosslink density, we 
have 

 
H
XNNNXN 2

botsurbot2 )()( −+= , (20) 
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η
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so that botNN =  at the bottom face of the hydrogel layer ( 02 =X ) and surNN =  at the surface 
( HX =2 ). The other material parameter, χ , is assumed to be a constant. 
 
Fig. 5 shows the critical chemical potential and the critical swelling ratio as functions of the 
perturbation wave number for the graded hydrogel layer with NsurΩ = 0.01, NbotΩ = 0.001, χ = 0.4, 
and the shape factor η = 0. The three curves in each figure represent the results for the graded layer 
divided into 5, 10, and 20 sub-layers, respectively. Similar to the hard-on-soft hydrogel bi-layer in 
Fig. 3, there exist the minimum critical chemical potential *

cμ  at a long-wave mode *ω . It can 
also be observed that the results converge very fast, especially *

cμ , *ω , and the according critical 
swelling ratio *

cλ  coincide very well. Therefore, the enough accurate results may be obtained by 
using 20 sub-layers. 
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(a)                                        (b) 

Fig. 5. (a) Critical chemical potential and (b) the corresponding swelling ratio versus the perturbation wave 
number for the graded hydrogel layer divided into 5, 10, 20 sub-layers, respectively. 
 
The critical swelling ratios for different gradient profile with η = -5, 0, 5 are plotted in Fig. 6. It is 
interesting that critical swelling ratios relate to the shape factor η. For soft-on-hard graded layers 
(Nsur<Nbot), the critical swelling ratio decreases monotonically with increasing wave number, which 
is similar to the case of soft-on-hard bi-layers, but without a local minimum *

cλ . The onset of 
surface instability is determined by short-wave limit and the according swelling ratio ∞

cλ  decreases 
as the shape factor increases (Fig. 6a). For hard-on-soft graded layers (Nsur>Nbot), the critical 
swelling ratio for the long-wave mode ( *

cλ ) and the according wavelength ( *L ) depend on gradient 
profile as shown in Fig. 6b, and apparently *

cλ  is considerably lower than ∞
cλ  for the soft-on-hard 

graded layer with the same shape factor. The critical swelling ratio for the long-wave mode ( *
cλ ) 

varies with the shape factor η monotonically as shown in Fig. 7a. The swelling ratio decreases as 
the shape factor increases. However, the wavelength of the critical long-wave mode ( ** /2 ωπ=L ), 
normalized by the layer thickness H , first increases and then decreases with the increasing shape 
factor η as plotted in Fig. 7b. 
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Fig. 6. Critical swelling ratio obtained by 20 sub-layers versus the perturbation wave number for: (a) 
soft-on-hard and (b) hard-on-soft graded hydrogel layers with different shape factors. 
 
From the results for graded hydrogel layers, we can predict that the behavior at the onset of surface 
instability for graded hydrogel layers is similar to that of hydrogel bilayers, i.e., the soft-on-hard 
graded layer with no characteristic length and the hard-on-soft graded layer with a finite wavelength. 
Furthermore, both the critical swelling ratio and the wavelength depend on the gradient profile. 
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Fig. 7. (a) The critical swelling ratio for the long-wave mode and (b) the corresponding wavelength with 
shape factor η ranging from -5 to 10. 
 
5. Conclusions 
 
Based on the theory for homogeneous hydrogel layers, we presented a theoretical solution for the 
critical condition of swell-induced surface instability for a graded hydrogel layer on a rigid substrate. 
Graded hydrogel layers with the crosslink density varying in the thickness direction as well as 
hydrogel bilayers were examined as examples. The results show that both the critical condition and 
the instability mode depend on the variation of the material properties. For a soft-on-hard graded 
layer, the onset of surface instability is determined by a short-wave mode with a limiting short 
wavelength. In contrast, for a hard-on-soft graded layer, a long-wave mode with a finite wavelength 
emerges as the critical mode at the onset of surface instability. The critical swelling ratio of the 
long-wave mode for hard-on-soft graded layers is considerably lower than that of the short-wave 
limit for soft-on-hard ones with the same shape factor. In addition, we found that both the critical 
swelling ratio and the characteristic wavelength depend on the gradient profile of material 
properties. 
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