
13th International Conference on Fracture 
June 16–21, 2013, Beijing, China 

-1- 
 

Fracture of rubbers under biaxial loading:  
A criterion based upon the intrinsic defect concept 

 
Moussa Naït Abdelaziz1,*, Fahmi Zaïri1, Nourredine Aït Hocine2 

 
1 Université Lille 1 Sciences et Technologies, Laboratoire de Mécanique de Lille, F-59655 Villeneuve d'Ascq, France 

2 Université François Rabelais de Tours, Laboratoire de Mécanique et Rhéologie, F-41034 Blois, France 
* Corresponding author: moussa.nait-abdelaziz@univ-lille1.fr 

 
Abstract Since the use of rubbers has been widespread in many industrial applications these last decades, the 
structures integrity including rubber parts requires the mechanical capabilities of such materials to be known 
and mastered. To prevent failure in the designing process, it is necessary to provide strong criteria taking into 
account not only their highly extensible capability but also the complex multiaxial loadings to which they 
could be subjected. In this work, the intrinsic defect concept is introduced and coupled in the fracture 
mechanics framework with the J integral in order to derive a multiaxial fracture criterion. Mechanical tests 
up to failure on rubber specimens subjected to monotonic biaxial loading paths were achieved on two 
materials. The fracture criterion requires as an input the critical value of the J integral which was also 
experimentally measured on CCT specimen. A generalized expression of the J integral under biaxial loading 
is proposed on the basis of finite element calculations on a representative volume element containing a 
small circular defect. The estimated failure elongations were found in very nice agreement with experimental 
data on the two kinds of rubber materials. Moreover, we have also outlined the predicting capability of this 
approach when applied to thermoplastic elastomers. 
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1. Introduction 
 
The fracture mechanics approach [1, 2], and its extension to rubbers [3-11], has shown its capability 
when dealing with crack problems. Nevertheless, if the material contains no visible crack or defect, 
this approach can be adapted assuming that all materials generally contain defects. These defects 
originated from material process can grow when subjected to mechanical loading and provoke 
failure of the component. When dealing with rubbers, these defects may be due to the reinforcing 
particles added to the neat matrix. Even the filler size is generally very small (less than 100 nm) but 
it can form aggregates, the size of which can have strong effects on the strength [12, 13] or the 
fatigue life properties [14-16]. In this work, an attempt to predict the fracture of specimen 
containing no cracks, but assumed to contain intrinsic flaws, by using the fracture mechanics 
approach is explored. The main assumption which is made is that these intrinsic flaws, as classical 
cracks, act as potential stress concentrators which are responsible of the fracture. This analysis uses 
experimental data obtained from mechanical tests under different biaxial loading paths [17, 18]. 
 
2. Experimental study 
 
2.1. Materials and experiments 
 
Two materials are used in this study: a Natural Rubber (NR) and a Styrene Butadiene rubber (SBR). 
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Different loading paths are used: uniaxial tension, pure shear, equal biaxial tension and biaxial 
tension with three biaxiality ratios. The biaxial loading was obtained by inflating a membrane 
(elliptical for biaxial loading and circular for equal biaxial loading) up to failure [17, 18]. For each 
test, the stretches λi (defined as the ratio of the actual length over the initial length in the i principal 
direction) in the two loading directions are measured up to complete failure giving the critical 
values. In the thickness direction λ3 is estimated by using the incompressibility assumption: 
 1 2 3det 1λ λ λ= =F , (1) 
 
where F  is the deformation gradient tensor. The critical J integral Jc was measured on 
center-cracked tension (CCT) specimens [11] for the two hyperelastic materials. The Jc average 
values were 21 kJ/m² and 13 kJ/m² for SBR and NR, respectively. 
 
2.2. Constitutive laws 
 
Th above mentioned tests were used to identify the parameters of the constitutive laws [17, 18]. For 
the NR material, it was found the best fitting of the experimental data is given by the Yeoh strain 
energy density (SED) function [19] while for the NR material a second order Ogden function was 
preferred [20]. The two SED functions are given by equations (2) and (3) respectively: 
 ( ) ( ) ( )2 3

10 1 20 1 30 13 3 3= − + − + −W C I C I C I , (2) 

 ( ) ( )1 1 1 2 2 21 2
1 2 3 1 2 3

1 2

3 3α α α α α αμ μλ λ λ λ λ λ
α α

= + + − + + + −W , (3) 

 
where W is the SED, I1 is the first invariant of the right Cauchy-Green strain tensor, λi are the 
principal stretches and Cij, μi and αi are material constants to be determined using a least square 
method. Table 1 reminds the values of all the material constants. 
 

Table 1. Material constants for the NR and SBR materials. 

C10  (MPa) C20  (MPa) C30  (MPa) 

NR  
0.298 

 
0.014 0.00016 

μ1  (MPa) α1 μ 2 (MPa) α 2 

SBR  
0.638 

 
3.03 -0.025 -2.35 

 
  
2.3. Intrinsic flaw size 
 
To determine the intrinsic defect size, the formulation given by Rivlin and Thomas [3] can be used. 
For plates containing a crack of length a and submitted to tensile loading, these authors expressed 
the tearing energy T, equivalent to the J integral, as follows: 
 ( )2J T k Waλ= = , (4) 



13th International Conference on Fracture 
June 16–21, 2013, Beijing, China 

-3- 
 

 
where k is a proportionality factor depending on the stretch ratio, which can be expressed for single 
edge cracked specimen (SENT) specimens, according to Lindley [21] in the following form:  

 ( )2.95 0.08 1 λ
λ

− −
=k , (5) 

 
For CCT specimens, the expression proposed by Lake [22] is slightly different: 

 π
λ

=k , (6) 

 
Therefore, the intrinsic defect size can be estimated using equation (4). It comes: 

 
( )2

c
th

c c

Ja
k Wλ

= , (7) 

 
in which Jc is the critical value of J mentioned earlier in section 2.1, Wc corresponds to the SED at 
break of a smooth specimen loaded in uniaxial tension which can be computed using equations (2) 
and (3) and λc is the stretch at break under uniaxial tension. Since the intrinsic flaw is supposed 
embedded in the bulk, the flaw is taken centered in this investigation and equation (6) is used to 
calculate the k factor. Using equation (7) the size was found equal to 120 μm for NR while for SBR 
the size is 160 μm.  
 
3. Finite element analyses 
 
3.1. Representative volume element 
            
Assuming a circular defect in order to avoid preferential propagation direction under biaxial loading, 
a representative volume element (RVE) was introduced to achieve finite element calculations. Since 
the defect size is estimated from uniaxial tension tests, the size of the square shape RVE was fixed 
equal to the width of the tensile specimen which is 10 mm as schematically shown in figure 1. 

 

                                 
Figure 1. Reference volume element containing a circular defect. 

 
Due to the symmetries of the RVE, only a quarter of the specimen (the shaded part) is modeled in 

ath

10 mm 

10 mm 
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the finite element program. Such a modeling allows getting uniaxial tension, pure shear and 
different biaxial loadings by varying the ratio in the assigned displacements respectively in the 
horizontal and vertical directions. 
 
3.2. J integral determination 
 
The numerical analysis is performed under plane stress and finite strain conditions using a total 
Lagrange framework, the constitutive laws being an input given by SED functions previously 
introduced in equations (2) and (3). The FE program was Marc MS software. 
To calculate J, the Begley-Landes method [23] based upon the energy interpretation of J was used. 
which allows to express J in the following form: 

 UJ
A

∂
= −

∂
, (8) 

where U is the stored elastic energy and A is the crack (defect) area. This method requires to 
estimate the potential energy for varying crack lengths and to plot the energy per unit thickness 
function of the crack area for a given displacement. The evolution is fitted by straight lines the slope 
of which gives the J value. In this work, for each material, seven defect sizes close to the reference 
value (i.e. that calculated by using equation (7)) were used to estimate J. In order to verify the 
validity of the Begley-Landes method, preliminary calculations on a RVE containing a sharp crack 
were achieved. The values obtained were compared to the direct calculation of the J integral 
available on the software. The results, shown in figure 2 for uniaxial tension, highlight the validity 
of this method, especially for high level of strain.  
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Figure 2. Evolution of the ratio Jint/JBL as a function of the principal stretch λ1 (SBR material). 

 
3.3. k factor evolution 
 
Finite element simulations were achieved for uniaxial tension, pure shear and four biaxiality ratios b 
defined as: 
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 2

1

b λ
λ

= . (9) 

The k factor was then computed using equation (4). Figure 3 shows the evolution of this factor as 
function of the equivalent stretch expressed as follows: 

 1

3
λ =eq

I , (10) 

where I1 is the first invariant of the right Cauchy-Green strain tensor. 
The influence of the loading path is clearly highlighted on this figure. Moreover, we have not found 
any effect of the kind of material.   
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Figure 3. k factor as a function of the equivalent stretch λeq (circular defect, a = 0.06 mm). 

 
4. Results 
 
4.1. A new unified expression of J 
 
Since a strong dependence of k on the biaxiality ratio is pointed out, the calculation of J using 
equation (4) requires to analytically express the k factor for every value of b. Another idea is to try 
to unify these results leading to rewrite J in the following form: 
 ( )2 eqJ f Waλ= , (11) 

 
where f is a function of the equivalent stretch which can be expressed in a multiplicative form as 
follows [24]: 
 ( ) ( ) ( )eq eq eqf g

γ
λ λ λ= , (12) 

 
where g is another function of the equivalent stretch and γ is an exponent depending on the 
biaxiality ratio [24] and varying from 1.05 for uniaxial tension to 1.35 for equibiaxial tension. 
Equation (11) therefore becomes: 
 ( )2 γλ λ= eq eqJ g Wa . (13) 
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In this case, as shown in figure 4, all the data can be shifted to get a master curve and the evolution 
of g can be written in a polynomial form as follows: 

 ( ) 2 4 6

2.837 2.888 2.5070.255eq
eq eq eq

g λ
λ λ λ

= + − + , (14) 

 
As shown on figure 4 all the data (dots) are well fitted by equation (14) represented by the 
continuous line. 
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Figure 4. g as a function of the equivalent stretch λeq (a = 0.06 mm if not reported). 

Figure 5 shows the validity of equation (11) to estimate the J integral. Indeed, the values 
obtained from equation (11) are compared to the data issued from the Begley-Landes method in 
the case of biaxial loadings.  
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Figure 5. Comparison between J calculated from equation (11) and JBL issued from the Begley-Landes 

method for biaxial loadings. 
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The maximum deviation observed is less than 5% (dashed lines). Note, even not reported on the 
figure, that the accuracy for uniaxial tension and pure shear is improved. 
 
4.2. Fracture criterion 
 
At crack initiation J takes its critical value expressed as follows: 

 02 4 6

2.837 2.888 2.5072 0.255
c cc eq c

eq eq eq

J W aγλ
λ λ λ

⎛ ⎞
= + − +⎜ ⎟⎜ ⎟

⎝ ⎠
, (15) 

 
where the subscript c denotes the critical value reached at crack initiation. From equation (15) the 
critical stretches can be therefore derived for any loading path. 
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Figure 6. Failure envelopes for (a) NR and (b) SBR. 
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Figure 6 shows the predictive capability of the proposed approach. The failure envelope in terms of 
principal stretches is well predicted when using the intrinsic defect concept coupled with fracture 
mechanics. For NR, the exponent γ can be taken constant while for SBR it is necessary to introduce 
a slight variation with the biaxiality ratio. 
 
5. Conclusion 
 
A fracture criterion based upon the intrinsic defect concept is an original way to predict the critical 
stretches at failure when dealing with rubbers. The methodology we have proposed is quite easy to 
use and only requires two data: the stretch at break under uniaxial tension and the fracture 
toughness in terms of Jc. The constitutive law of the material is also an input which is necessary. We 
have also developed a general formulation of J which can be used, whatever the loading path in 2D 
conditions.  
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