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Abstract In this paper a new augmented finite element method (A-FEM) that can account for multiple,
intra-elemental discontinuities in heterogeneous solids has been derived. It does not need the extra DoFs as
in the extended finite element method (X-FEM), or the additional nodes as in the phantom node method
(PNM). The new A-FEM employs four internal nodes to facilitate the calculation of subdomain stiffness and
the crack displacements due to an intra-elemental discontinuity. It is shown that through a novel efficient
solving algorithm the displacement DoFs associated with the internal nodes can be solved analytically as
functions of the regular nodal DoFs for any piece-wise linear cohesive laws, which leads to a
fully-condensed elemental equilibrium equation that is mathematically exact. The new formulation permits
repeated elemental augmentation to include multiple interactive cracks within a single element, enabling a
unified treatment of the evolution from a weak discontinuity, to a strong discontinuity, and to multiple
intra-element discontinuities, all within a single element that employs standard DoFs only. The new A-FEM’s
capability in high-fidelity simulation of interactive cohesive cracks in homogeneous and heterogeneous
solids has been demonstrated through several numerical examples. It has been demonstrated that the new
A-FEM achieved more than two orders of magnitude improvement in numerical accuracy, efficiency, and
robustness, compared to the X-FEM.
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1. Introduction

High-fidelity numerical simulation to the progressive damage evolution in complex heterogeneous
materials such as composites remains a significant challenge despite decades of intensive research
[1]. Heterogeneity poses special problems with the accurate prediction of local stress and strain
fields, which can vary strongly with local material features; and with predicting cracks and
localized damage bands, which can appear during damage evolution not only on the material
boundaries, but also on other surfaces that cannot be specified a priori. The material heterogeneity
issue cannot be resolved adequately by mainstream formulations of conventional
materials/structures modeling, owing to the complex interaction between fiber tow architecture and
constituent materials heterogeneity. One challenge is that many complex composites such as textiles
are heterogeneous on the same scale as that of the features of the structures, which negates the
common strategy of homogenizing the material properties in simulations. Furthermore, the structure
will generally be subject to non-periodic mechanical and thermal loads, including spatial and
temporal peaks.

The above challenges require the establishment of numerical modeling platforms that can deal
with structural level performance with microscopic level resolution so that arbitrary local damage
evolution, from their nucleation stage and coupled evolution to structurally critical dimensions, can
be faithfully predicted. Traditional material degradation types of continuum mechanics based
approaches are not likely to meet the challenges because the critical damage coupling information is
lost during the homogenization process [2, 3]. Currently there are several promising methods that
can deal with the material heterogeneity and the associated progressive damage issues. For example,
the Peridynamics method [4, 5]. However, this method remains extremely computational intensive
and its fidelity in dealing with complex material heterogeneity in 3D textiles has yet to be
demonstrated. Another important class of numerical methods is the partition-of-unity based finite
element methods (PUFEM[6], including the extended finite element method (X-FEM) [7-9] and the
phantom node method (PNM) [10-14]. These methods are relatively mesh-independent and
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computationally efficient when dealing with individual cracks. However, with these methods,
tracing the evolution of complex fracture surfaces of multiple cracks quickly becomes extremely
tedious and numerically burdensome [8, 15, 16].

Therefore, it is beneficial to seek numerical methods that can account for arbitrary
discontinuities with less numerical burden for tracing complex crack surfaces. In this regard the
embedded discontinuity FEM with internal DoFs is very promising [17-20]. This approach seeks to
enrich the elemental strain field so that the discontinuity in strains or in displacements across a
discontinuity can be represented. The additional DoFs associated with the crack displacements are
then fully condensed at elemental level [19, 21]. However, this method suffers from possible stress
locking because in many cases the assumed deformation modes are not permissible with the
sub-domain element deformation modes. Furthermore, construction of an enhanced or augmented
element with embedded multiple cracks to permit arbitrary crack merging and bifurcation becomes
extremely tedious and difficult.

It is therefore highly desired to develop new finite element methods that can deal with discrete
cracks without the need of introducing additional DoFs or nodes, so that the numerical burden for
tracing crack surfaces can be minimized. In this paper, we present a new augmented finite element
method (A-FEM) that can account for 1) intra-element material heterogeneity and 2) repeated
elemental augmentation to enable multiple, interactive intra-element discontinuities. These
capabilities are crucial to high-fidelity simulations of heterogeneous materials such as composites.
In addition, we report a novel and efficient solving algorithm for elemental condensation that
provides analytical solutions to the local equilibrium equations with embedded piece-wise linear
cohesive crack like discontinuities. It will be demonstrated that the A-FEM empowered by the new
condensation algorithm can provide orders of magnitude improvement in numerical efficiency,
accuracy and robustness.

2. New A-FEM for Arbitrary, Multiple Cracking in Heterogeneous Solids
2.1 A-FE Formulation with Single Crack

Without the loss of generality, we choose the 4-node quadratic plane element to illustrate the
augmented finite element scheme. The physical element with regular nodes 1, 2, 3, and 4 is severed
by a cohesive crack (a strong discontinuity) or a bi-material interface (weak discontinuity) where
the tractions are continuous but displacements are not. Figure 1 shows the two possible cut
configurations. Instead of introducing two nodes with DoFs representing the assumed deformation
modes (constant or linear) as in literature [19, 20], here we introduce 4 internal nodes (node No. 5, 6,
6’ and 5’ in Fig 1 (b & c)) with regular displacement DoFs so that the displacement jump is simply
the difference between the respective node-pairs. As will be seen shortly this novel formulation
allows us to derive accurate elemental equilibrium equations without the need to assume
deformation modes, and more importantly, it offers the great advantage of permitting multiple
intra-element discontinuities.

The internal nodes also facilitate the stiffness calculation of the sub-domains so that the

equilibrium of the entire element can be expressed in general as the following.

L; L, d, F, L, L, d, F,
{[ il] [fZ]H i*‘}={ } (for Q°); {[ ) [“]H i“}={ } (for Q) (1)
[LZl] [L22] dint Fint [L21] [L22] dint Fint
where {d_,.d;} and {d ,d;}' are DoFs of the external or regular nodes and the internal nodes
in the two subdomains, respectively. {F; F:3and {F,, . } are the nodal forces associated with
regular and internal nodes; [Li]and [L;](i, j = 1,2) are the stiffness sub-matrices of respective

domains, which can be easily obtained with standard or subdomain integration schemes. The
internal force arrays come from the integration of cohesive stresses along the crack surfaces, and,
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due to stress continuity across the cohesive crack, ¥, =F;.=-E,

int

= -F,, . Note that, irrespective the cut
configurations in Figure 1 (b) or (c), the internal displacements are always d;, =dg.;d;, =dg;.

int

Fyi, A
{

Fyar Vo

(@) (b) (c)

Figure 1 Illustration of the element augmentation from a regular element with possible different material domains
(a), to an A-FE with two rectangular sub-domains (b), or to an A-FE with one triangular sub-domain and one
pentagon sub-domain (c).

For the piece-wise linear cohesive laws shown in Figure 2, the cohesive stresses as functions of
crack displacements can be written as

0(5,)=6"Y+a,"(,-6"")  (5,<[6,5" (i=12--4)

7(8,) =san(8,)| #9720 + &V (8- 8.9) | (|6,| 16,60 (j=12,--4)
where sgn(-) is a sign function, and || denotes absolute value; o(5,) and z(o,) are normal and
tangential tractions along the cohesive crack; & and & are normal and tangential crack

displacement; the superscripts i and j denote the linear segment number as labeled in Figure 2. &
and 7, 5 @and 57, a,"and « " are the characteristic stresses, crack displacements, and

A~

slopes (Fig 2),and 69 =72=0 and 5©=6=0.

(2)

f ' 0/,/ 651 é‘s* 652 550 55
; S~
I 5n1 5n* é‘nZ 5nc 5:1 P -t -7,
(a) mode I cohesive law (b) mode Il cohesive law

Figure 2 Mixed-mode cohesive model with piece-wise linear traction-separation laws used in this study

The propagation criterion used for the cohesive crack is one that has been widely used and
validated in literature [22, 23]

QT/F.+§J/F||=1 (3)
where G, and @, are the energy dissipations at which the cohesive failure occurs (shaded areas

in Fig 2), and T, and T, are the total areas under the pure opening and pure shear
traction-separation laws.

With the above piece-wise linear cohesive law, the cohesive stresses between the two pairs of
internal nodes 5-5’ and 6-6’ are known. The internal force arrays K and F,.. are the cohesive

stresses integrated over the crack surfaces and transfer them into global coordinates,

F,; = -F,5 = 1.7(S, + a{Ad, Adg }') (4)
where Adg, =d, —d, and Ad.. =d.. —d..S, and a are the matrices determined by the characteristic
cohesive stresses and slopes. Substituting Eqn (4) to Egn (1) the following is derived
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{dG'S'} __IelAil (I_ |81a(\I!;2)*1) 0 {SO}

des J | 0 1B~ (- 1,0(%3)™) | (S, -
+__|e1Aila(T;2)7lL721 _A71L+21 :|{dext}
L _BilLizl —|elel‘1(‘I’§z 71L+21 d;rxt

where ¥, =L, +l,0;%,, =L, +l,0;A =¥}, — | °a(¥,,) ‘a; B=Y,, - ., a(¥},)"a, and I is
the identity matrix. Substituting Eqn (5) it into Eqn (1) the full condensed equilibrium is obtained,
{ L, -L,BL,, —I,L,Bla(¥}, 1L*21Hdm}
—1, LA a(¥;,) 'L, L), -L,A™L, d;,
) {Fext}_ L L,B ™ (1-1,a(¥;,) ) 0 {So} ©)
K 0 1L LLA (1= 10(¥,) ") | 1S

ext

Elemental Condensation Algorithm

Egn (6) is nonlinear due to the nonlinearity from the cohesive laws. In the literature,
Newton-Raphson method [19, 20] (or its modified variants) has been used to solve this equation
iteratively. However, our novel derivation above has yielded an explicit expression between the
displacements of the internal nodes and those of the external nodes, i.e., Eqn (5). We have proved
that, for any piece-wise linear cohesive laws, d, andd, can be uniquely determined with
mathematical exactness through a very simple yet efficient algorithm. The algorithm solves Eqgn (5)
by consistent check between trial cohesive slopes and the resulted crack displacements. Once Egn
(5) is solved, the matrices [B], [K},], and [K,] are all determined and elemental equilibrium of
Eqgn (6) is determined with mathematical rigor. This novel way of solving the crack displacements

has never been reported in literature and we later show that it leads to orders of magnitude
improvement on numerical efficiency.

2.2 A-FE Formulation with Two Interactive Cracks

In such a case, there are altogether three basic cracking configurations as shown in Fig 3(a),
Fig 3(b) and Fig3(c), where l¢; is the first crack length and I, is the second crack length. The second
crack intersects and cuts the first crack into two segments with length yle; (left) and (1-y)le; (right).
Despite the different crack configurations in Figure 3, the internal DoF and force arrays can be
arranged in a unified way as below.

di;t =dgs; dlrn_t =dgg7; d:r:t =g Fl;t =Fys; FJ\; =Fg7; F|In; = Frgs (7)
This enables a unified expression for the equilibrium of all three subdomains as follows
L;l LJ:rLZ {d;xt } — {Fet(t } (a) (for Q+)
_L+21 LEZ_ d6‘5' F6'5‘ (b)
Ly Ly { dz, }: { K, } (c) for ) @)
_er_l LrZ_Z_ d58'7' F58'7' (d)
L, L, {d'e;t } _ {F} (€) (for )
_U2_1 I“|2_2_ d786 F786 (f)

e B
ijrij
QF, Q"and Q" , respectively. To integrate the cohesive stress along the three cohesive crack
segments into respective internal nodal forces, the first order Gaussian Integration scheme was used

on each of the three cracked segments. The integration points are at the center of each crack

Here, the sub-matrices (L and L, (i, j = 1, 2)) are the stiffness matrices of the subdomains
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segment as indicated in Figure 3(b) by the solid dots labeled by I, Il, and I11.
The relation between these cohesive stresses and the internal nodal displacements is

(09,691 =6y, +0oR, (L~ 7/2)dy + (7 12)dy )~ 0 R, (dg +d, )/ 2

T
(7,0, "} =60y + 0 R, (1= 7/2)ds +(1+7/2)dg) — 00, R, (ds +dy. ) /2 9)

f(i) —a (i)é‘ (i) i.‘(k) —a (k)é‘ (k) f(m) —a (m)é‘ (m)
S S N S S N S S
Oo1 =9 (i Na(in(* OBon =7 A v Oon =3 .
O.(J) _ an(J)é‘n(J) O.(') _ aﬂ(')gﬂ(') 0(") _ an(n)é‘n(n)

H k). 7. H . .
a,, = Dlag[as( ),an( T; o, = Dlag[as(m),an(”)],

TFvsv Vs F VT 5 5 TFysv Vs Fo Uy TFY" A
Fals g Fe UL
3 AT 3 Fo b
6
7
6
7
" F, U 2, F,
e T 7 7 T w2 U
vor Vo Fo vy Fpai v, i

(b)

Figure 3 Illustration of a 2D A-FE with two intra-elemental cracks (3 subdomains)

The internal forces, {F;.}, {F.}, and {F,;}, integrated from the cohesive stresses along the
respective crack lengths are

F.=T; {ﬂm, o, 7,0, G”(,)}T
Fg =Ty {Tl(i)’ a7, o-nl(n)}T (10)
Fogp =Ty {Tl(k)’ a7, o-nl(n)}T

where T, Ty ,and Ty are the respective integration matrices:

2
T+:—l 7(2_7)|91R1T (1_7) IelRlT .
R )
2 4 2IelRlT d-r Z)IelRlT

1 0 IeZRzT (1_ y)lelRlT 0 (11)
T, = 2 VRS R L T = 2 -7IR" —I,R,"
7R, 0 0 ~1.,R,"

Substituting Eqn (9) into (10) and then Eqn (8), the internal crack displacements can be derived as
d6'5' Y7 Y8 Y9 Sl X13 X14 XlS dl7

ext

dgs (=Y, Y5 Yo [1S0+] Xy Xy Xy, [1dg,

ext

dsg7- Y. Y, Y |(S; X; X X |d;

ext

(12)

where S, =T, {Gowoou }T ' S, = Tllz_ {Gowcom }T Sy =Ty {Gou’com }T ;
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X, = Ly, =0y, — 0y, (X)) 00y,

X, =—ay(X,) "0y,

Xs =X —X,(X,) 1X3
Xy = =(X,) "Ly;

— Oy,

X, = —(X,) XX,

Xy = (X)) (0:X; + @, X )

Xys = (X,) ™ (—L; + 05X + @, X, )
Y, = (X)X, (X,)

= (X,)* =(X,) ™ (01 (X)) - X,Y));
Y; = (X ) ( ) Y, = _(Xz)ilana;
=(X,)" (I + “13Y +0,Y, ) Y, = (X1)71 ("'13Y2 + ales);
Y, =(X,) (ale +0,Y, )
1. @2=p)e,R, yaoR, 1.0 —eR; —agR, |
o, == 1x ) a, =-Ty )
L-7ou R, (1+7)ayR, 2 0 0 0
0 0 0 2-7)a o, R
U~13:1T1¥[ } o, 7T||z {( 7)o R,  yay, 1:|;
2 -0, R, —a,R; 0 2 0 0
0 -0, R, -a,R 0 0 0
0y, ZETII{ R OlRl " 1} a2321T1|1|: R R ]
| =0 Ry —0g) KR, 0 2 0 o,R, o,R,
0. — ETF (1-7)ogR, (1+7)ayR, ]| 0. — 1 0 0 0
o2t L 0 0 , *o2" —oo, R, a,R, 0 ’
O = ETr— __aOIIRl _aouRl 0 }
o2 .0 a,R, oyR,

Finally, by substituting Egn (12) into expressions (a, ¢, €) in Eqn (8) to eliminate the internal
nodal displacements, the fully condensed elemental equilibrium equation is obtained as

Ly +LpXy,  LpXy, LoXy,  |[de ] [Fo| |LpYe LpYs LpYo|(S
LpX; L+ LpXe Xy adg r=F - LYy LY, LY |98, ¢ (13)
LJ_’rLZXl3 I";2X14 L;l + I‘+12)(15 d;xt Fe+><t I“JEZY7 LJ_’rL2Y8 LXZYQ S3

Note that Eqn (12) and Egn (13) share the same matrices X, (p =1, 2, ...15), Y, (q =1,

2,...9), ), and Sy (r = 1, ..3), which are all functions of the characteristic cohesive stresses
(0,,,0,,, and 6,,,) and the cohesive stiffnesses (a,,,a,,, and a,,,) (Eqn 9). The same elemental

condensation procedure in section 2.1 applies to Eqn (12) and, once the solution is found, X, Y,,

Srare all established. Substituting them into Eqn (13) the fully condensed elemental equilibrium is
then satisfied with mathematical exactness.

3. A-FEM Simulated 4PSB Test and Compared with X-FEM
In this section, the capabilities of the proposed A-FEM is first evaluated by simulating the crack
propagation in a 4-point shear beam (4PSB) test reported in [24]. The problem has been simulated



13th International Conference on Fracture
June 16-21, 2013, Beijing, China

by Moes and Belytschko in [7] using the X-FEM with a non-structured triangular mesh. The
numerical model setup used in [7] is reproduced in Figure 4(a). The geometry dimensions are: b =
200mm; I/b=4;a/b=0.2;c/b=0.4;1;=1,=20 mm; t =100 mm.

As in [7], the maximum principal stress criterion was used for crack initiation and the cohesive
parmaeters for the concrete material are identical to those used in [7].
To investigate the mesh sensitivity of the present A-FEM, the problem was analyzed by five
different structured meshes with characteristic mesh size of h = 2, 4, 8, 13.3, and 20 mm (the total
elements are 10760, 2849, 1094, 640, and 410, respectively), and two unstructured meshes with h ~
4, 8, and 15 mm (total elements 4062, 1333, and 463, respectively). The two finer meshes (h = 2
and 4 mm) are the typical of those used in literature [21, 25], while the larger meshes (8, 13.3, and
20 mm) are used in this study to explore the mesh limit of the present A-FEM. The unstructured
meshes of ~ 4, 8, and 15 mm were intended to check the mesh sensitivity and the robustness of the
new A-FEM. Five of the discretized models (structured h = 2, 8, and 20 mm meshes and
unstructured h ~ 8 and 13 mm meshes) under deformed states are shown in Figure 4 (b, c, d, e, 1)
with the crack trajectories roughly following the center lines of the white bands.

(a) 4PSB Geometry, boundary and loading

(b) 2 mm — structured {10760 elements) (e} & mm — unstructured (1233 elements)

L_ZRiel

(c) 8 mm — structured (1094 elements) {f) 13 mm — unstructured (463 elements)

Figure 4 (a) Numerical models and simulated crack paths for structured 2mm (b), 8 mm mesh (c), and 20
mm mesh (d), and unstructured 8 mm (e) and 15 mm (f) meshes.

3.1 Mesh Sensitivity

The simulated load-displacement curves are plotted in Figure 5(a). The X-FEM prediction
obtained by Moes and Belytschko [7], which used a triangular mesh of h ~ 3 mm, was
superimposed on this plot for comparison (the dashed line). All curves exhibit a strong snap-back
behavior. In this study, the strong snap-back behavior was captured using the arc-length method
available in ABAQUS (Option RIKS).

The A-FEM computed load-displacement results are very consistent with the X-FEM result
obtained in [7]. In particular, the load-displacement curves obtained with smaller mesh sizes (i.e.,
h =2 mm, 4 mm, and 8 mm) are almost identical with the X-FEM results. For the larger meshes, i.e.,
h =13.3 mm and 20 mm, the curves deviates mildly the finer mesh curves due to increases in initial
stiffness. The systematic increase of initial stiffness with the increase of mesh sizes is largely due to
the inherent numerical inaccuracy associated with the 4-node plane elements. This clearly
demonstrates the mesh insensitivity of the present A-FEM.

Figure 5(b) summarizes the crack trajectories predicted by the five simulations with structured
meshes. The crack paths are all very consistent and close to the experimental curve, despite they
were obtained with vastly different mesh sizes. The predicted crack trajectories with the three
unstructured meshes are also very consistent with those in Fig 5(b), which further demonstrates the
mesh objectivity of the new A-FEM.

The insensitivity of the A-FEM to mesh structures is further demonstrated in Fig. 5(c) and Fig.
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5(d). These plots compare the load-displacement curves (Fig 6¢) and crack trajectories (Fig 6d)
obtained with three structured meshes (4, 8 , and 13 mm) (solid lines) and those computed with
unstructured meshes of similar mesh sizes (broken lines). The two sets of results are basically
indistinguishable.

100 X-FEM(Moes & Belytschko 2002) 200
(triangular mesh /,~ 3mm) Moes & Belytschko 2002

\ (XFEM-triangular 3 mm mesh)
80
150 | ave. exp. data
(Carpinteri,
etal. 1993)

60 74

£
\_ Presen t A-FEM € 100
7\ (2 mm) >
f N\ 14 mm)
\\\Ns mm)
(133 mm) 50
*(20 mm)

40 -

Total Load, KN

20

0 0.02 0.04 0.06 0.08 0.1 0.12 -100 -50 0 50 100

Load-point Displacement, mm X, mm
(@) (b)
100 108
X-FEM[Maes & Belytschko 2002) @
{triangular mesh i, = 3 mm)
10°
80
%FEM (ABAGUS) oy
(&mm) T 104
< ¥-FEM (ABAQUS) 3
g {2 mm) g 103 X
T a0 ) E \/
k] 3 — o
2
g 10 A-FEM
20
10t
0 )0
0 002 004 006 008 0.1 0.12 10
S 1 2 4 8 10 20
Load-point Displacement, mm .
Mesh size, mm
(©) (d)

Figure 5 A-FEM simulated load-displacement curves (a) and crack trajectories (b) with the five meshes as compared
to the X-FEM results and experimental results. (c) X-FEM predicted load-displacement curves compared with the
A-FEM predictions. (d) Comparison of the CPU time (right vertical axis), and the numerical error (left axis) as
function of mesh sizes

3.2 Numerical Efficiency and Stability as Compared to X-FEM in ABAQUS(v6.10)

In this section, the numerical accuracy, efficiency, and stability of the new A-FEM is compared
against the X-FEM results obtained with ABAQUS (v6.10). Comparisons were carried out for the
structure meshes only because the X-FEM failed to obtain converged solutions for any of the
unstructured meshes. The meshes, boundary conditions, and loading are exactly the same as those
used in previous section. All simulations were run on a Dell precision M4600 (x64 bit) mobile
workstation with Intel Core i7-2860 QM CPU @ 2.5 GHz and with 8 GB of RAM.

The XFEM (ABAQUS) simulated load-displacement curves are plotted in Figure 5(c). The
XFEM had enormous difficulty in completing these simulations. For the 2 mm mesh, the simulation
proceeded with such a small incremental size (10°® ~ 10® mm) that it had to be terminated at the
displacement of 0.08 mm after 72 CPU hours of running. For the 4 mm mesh, a sudden strong snap
back resulted from an incorrectly predicted crack path occurred at the displacement of 0.09 mm
after the peak (Fig 5c). For the 20 mm mesh, the simulation diverged at the displacement of 0.072
mm (after snap back). For the rest cases (i.e., 8 mm and 13.3 mm mesh), the simulations were able
to finish and the XFEM curves captures the peak loads and snap-back behavior reasonably well and
they are close to the A-FEM results in Figure (5c).

Figure 5(d) compares the computational cost in terms of CPU time (in seconds) as functions of
the mesh size. The CPU time corresponds to the point that when the displacement reached 0.1 mm
(after snap-back). For the 2 mm, 4 mm, and 20 mm mesh, the X-FEM simulations were aborted due
to the reasons discussed above. In these cases, the CPU times at the aborting points were taken and
such data points were indicated by the X in Fig 5(d). From Figure 5(d), it is concluded that the
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present A-FEM empowered by the novel condensation procedure, is at least 2 orders of magnitude
more efficient than the X-FEM.

4. CONCLUSIONS

In this paper, an elemental augmentation procedure has been established to derive the
augmented finite elements (A-FEs) that can accurately account for arbitrary intra-element cracks
and their interaction without the need for additional external DoFs as in X-FEM or extra nodes as in
PNM. It has been demonstrated that the new formulation makes it much easier in handling the
multiple crack interaction problems including crack coalescence or bifurcation, since it does not
require complex numerical algorithms to track the complex crack fronts.
The new A-FEM formulation does not need to assume deformation modes for elemental
displacement enrichment as in the embedded discontinuity method either. Instead, it introduces
internal node-pairs with normal displacements as internal nodal DoFs, which are eventually
condensed at elemental level. With the proposed formulation, the crack displacements become
natural outcomes of the elemental equilibrium consideration. The advantage is multi-fold. First, it
enables a unified treatment of both weak and strong discontinuities. Second, for strong
discontinuities with piece-wise linear constitutive relations, the new A-FEM formulation ensures an
exact solution (in the piece-wise linear limit) to the condensed elemental equilibrium, which greatly
improves the numerical accuracy, stability, and efficiency. Third, the unique A-FEM formulation
makes it straightforward to repeat the augmentation procedure within an element to include multiple
intra-element cracks, which is very powerful in dealing with multiple crack interaction problems
because such augmented elements do not need extra external DoFs or nodes.

A novel elemental condensation algorithm that can provide analytical solution to local
equilibrium has also been developed. The novelty in this algorithm is that, instead of assuming trial
crack displacements and iterating for elemental equilibrium such as in the Newton-Raphson method,
it starts with trial cohesive segments in the cohesive laws and finds the analytical solution (in
piece-wise linear sense) to the elemental equilibrium through a simple consistency check. For
piece-wise linear cohesive laws with only a small number of possible stiffness segments, this
algorithm is very efficient.

Through the numerical examples, it has been demonstrated that the new A-FEM method,
empowered by the new elemental condensation algorithm, achieved very significant improvements
in numerical accuracy, efficiency, and stability. In particular, through a rigorous comparison study
on a 4-point shear beam test, it has been found that the present A-FEM achieved an improvement in
numerical efficiency by more than two orders of magnitude as compared to the X-FEM in
ABAQUS. The A-FEM’s capabilities in high-fidelity simulations of interactive cohesive cracks in
heterogeneous solids have also demonstrated through the coupled debonding/kinking processes
frequently observed in fiber-reinforced polymer matrix composites
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