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Abstract In this paper, transient dynamic crack analysis in two-dimensional, layered, anisotropic 
and linear magnetoelectroelastic solids is presented. For this purpose, a time-domain boundary 
element method (BEM) is developed. The layered magnetoelectroelastic solids are modeled by the 
multi-domain BEM formulation. The time-domain dynamic fundamental solutions for 
homogeneous and linear magnetoelectroelastic solids are applied in the present BEM. The spatial 
discretization of the boundary integral equations is performed by a Galerkin-method, while a 
collocation method is implemented for the temporal discretization of the arising convolution 
integrals. An explicit time-stepping scheme is obtained to compute the discrete boundary data 
including the generalized crack-opening-displacements (CODs). To show the effects of the interface, 
the material combinations and the dynamic loading on the intensity factors, numerical examples are 
presented and discussed. 
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1. Introduction 
 
Magnetoelectroelastic materials offer many possibilities for advanced engineering structures due to 
their inherent coupling effects between mechanical, electrical and magnetic fields [3]. Important 
applications of magnetoelectroelastic materials are layered or laminated composites because they 
can be optimized to satisfy the high-performance requirements according to different in-service 
conditions. Beside cracks inside homogeneous domains, one of the most dominant failure 
mechanisms in layered or laminated composites is the interface failure. Interface cracks or interface 
debonding may be induced by the mismatch of the mechanical, electric, magnetic and thermal 
properties of the material constituents during the manufacturing process and the in-service loading 
conditions. Although the dynamic crack analysis in homogenous magnetoelectroelastic solids have 
been investigated by several authors (e.g., [5,6,7,9]) the corresponding investigation of interface 
cracks in layered magnetoelectroelastic solids is rather limited due to the problem complexity.  
In this paper, an interface crack analysis in two-dimensional, layered and linear 
magnetoelectroelastic solids under impact loading is presented. For this purpose, a time-domain 
boundary element method (BEM) is developed. The layered magnetoelectroelastic solids are 
modeled by the multi-domain BEM formulation. The time-domain dynamic fundamental solutions 
for homogeneous and linear magnetoelectroelastic solids are applied in the present BEM. The 
spatial discretization of the boundary integral equations is performed by a Galerkin-method, while a 
collocation method is implemented for the temporal discretization of the arising convolution 
integrals. An explicit time-stepping scheme is obtained to compute the discrete boundary data 
including the generalized crack-opening-displacements (CODs). Since the asymptotic crack-tip 
field for an interface crack between two dissimilar anisotropic and linear magnetoelectroelastic 
materials shows different kinds of oscillating and non-oscillating singularities [1], which makes an 
implementation of a special crack-tip element somehow cumbersome, only standard elements are 
used at the crack-tips. For the accurate computation of the dynamic intensity factors the numerical 
error is minimized by a displacement-based extrapolation technique. To show the effects of the 
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interface, the material combinations and the dynamic loading on the intensity factors, numerical 
examples are presented and discussed. 
 
2. Problem formulation 
 
Let us consider a piecewise homogeneous, layered and linear magnetoelectroelastic solid with an 
interface crack as shown in Figure 1.  
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Figure 1. A cracked piecewise homogeneous and linear magnetoelectroelastic solid 

 
In the absence of body forces, free electric charges, magnetic induction sources and applying the 
quasi-static assumption for the electric and magnetic fields, the cracked solid satisfies the 
generalized equations of motion 
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the constitutive equations 
 )t,(uC)t,( l,KiJKliJ xx ς=σ , (2) 
where the generalized displacements, the generalized stresses and the generalized elasticity matrix 
CiJKl for a homogenous domains Ωζ (ζ=1,2,…,N) are defined by 
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the initial conditions 
 0)0t,(u)0t,(u ii ==== xx  , (4) 
the boundary conditions 
 )t,(t)t,(t II xx = , tΓ∈x , (5) 
 )t,(u)t,(u II xx = , uΓ∈x , (6) 
and the continuity conditions on the interface without debonding 
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 )t,(u)t,(u II
I

I
I xx = , ifΓ∈x , (7) 

 )t,(t)t,(t II
I

I
I xx −= , ifΓ∈x . (8) 

In Eqs. (1)-(8), ui, φ, Φ, σij, Di, Bi are the mechanical displacements, the electric potential, the 
magnetic potential, the mechanical stresses, the electric displacements and the magnetic inductions; 
ρ, cijkl, εij, γij, eijk, hijk and βij denote the mass density, the elasticity tensor, the dielectric permittivity 
tensor, the magnetic permittivity tensor, the piezoelectric tensor, the piezomagnetic tensor and the 
magnetoelectric tensor, respectively. Further, Γif is the interface between the homogenous domains 
Ωζ (ζ=1,2,…,N), Γt and Γu stand for the external boundaries where the generalized tractions tI and 
the generalized displacements uI are prescribed. The interface cracks are considered as free of 
mechanical stresses, electric displacements and magnetic inductions 
 0)t,()t,( ciJciJ =Γ∈σ=Γ∈σ −+ xx , (9) 
where Γc± are the two crack-faces. The generalized crack-opening-displacements (CODs) are 
defined by 
 )t,(u)t,(u)t,(u cIcII −+ Γ∈−Γ∈=∆ xxx . (10) 
A comma after a quantity represents spatial derivatives while a dot over the quantity denotes time 
differentiation. Lower case Latin indices take the values 1 and 2 (elastic), while capital Latin 
indices take the values 1, 2 (elastic), 4 (electric) and 5 (magnetic).  
 
3. Time-domain boundary integral equations 
 
To solve the initial-boundary value problem, a spatial Galerkin-method is implemented, where the 
time-domain BIEs are treated in a weighted residual sense. The generalized time-domain 
displacement and traction BIEs can be written as 
 [ ]∫ ∫∫

Γ ΓΓ

ΓΓ∗−∗ψ=Γψ xyI
G
IJI

G
IJxJ dd)t,(u)t,,(t)t,(t)t,,(u)(d)t,(u)( yyxyyxxxx , (11) 

 [ ]∫ ∫∫
Γ ΓΓ

ΓΓ∗−∗ψ=Γψ xyI
G
IJI

G
IJxJ dd)t,(u)t,,(w)t,(t)t,,(v)(d)t,(t)( yyxyyxxxx , (12) 

where ψ is the weighting function, an asterisk “ * ” denotes the Riemann convolution, uIJ
G(x,y,t), 

tIJ
G(x,y,t), vIJ

G(x,y,t) and wIJ
G(x,y,t) are the generalized displacement, traction and higher-order 

traction fundamental solutions. It should be mentioned that the dynamic time-domain fundamental 
solutions for homogeneous, anisotropic and linear magnetoelectroelastic solids are not available in 
an explicit form. In the two-dimensional case they can be expressed by a line integral over the 
unit-circle [4,9]. 
 
4. Numerical solution algorithm 
 
A solution procedure is presented in this section to solve the time-domain BIEs (11) and (12) 
numerically. The procedure uses a Galerkin-method for the spatial discretization and a collocation 
method for the temporal discretization. A sub-domain technique is utilized, which divides the 
layered piecewise homogenous solid into two or several sub-domains with homogeneous material 
properties and to each sub-domain the time-domain BIEs (11) and (12) are applied. In the following, 
some details of the numerical solution algorithm are described. For the spatial discretization, the 
crack-faces, the external boundary of each homogeneous sub-domain and the interfaces are 
discretized by linear elements. Linear shape functions are also used for the temporal discretization 
in the present analysis. Since the asymptotic crack-tip field in the case of an interfacial crack 
between two dissimilar magnetoelectroelastic materials shows different oscillating and 
non-oscillating singularities in the generalized stress field, which makes an implementation of a 
special crack-tip element quite cumbersome, only standard elements are applied at the crack-tips. 
The strongly singular and hypersingular boundary integrals can be computed analytically by special 
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techniques. By using linear temporal shape-functions, time integrations can also be performed 
analytically. Only the line integrals over the unit-circle arising in the regular parts of the dynamic 
fundamental solutions have to be computed numerically by the standard Gaussian quadrature. 
After temporal and spatial discretizations and considering the initial conditions the following 
systems of linear algebraic equations can be obtained for each sub-domain Ωζ (ζ=1,2,…,N) 
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By invoking the continuity conditions (7) and (8) on the interface Γif and the crack-face boundary 
conditions (9) on Γc+ and Γc-, and by considering the boundary conditions (5) and (6), Eqs. (13) and 
(14) can be summarized and recast into the following system of linear algebraic equations 
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where yK is the vector of the prescribed boundary data, xK represents the vector of the unknown 
boundary data, Ak, Bk, C1 and D1 are the system matrices. Eq. (15) can be computed time-step by 
time-step. 
 
5. Intensity factors for an interfacial crack 
 
The intensity factors for an interface crack between two dissimilar anisotropic and linear 
magnetoelectroelastic materials can be computed from the generalized crack-opening displacements 
(CODs) 
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where K=K1+iK2, is the complex stress intensity factor, K4 is the electric displacement intensity 
factor and K5 is the magnetic induction intensity factor, ε1 and ε2 are the bimaterial constants, an 
overbar denotes the complex conjugate and i stands for the imaginary unit. The complex Hermitian 
matrix H is defined by 
 III YYH += ,  1

III i −= BAY , 1
IIIIII i −= BAY , (17) 

where the subscripts I and II indicate the two layers. The matrices A and B are computed from the 
eigenvalue problem as shown in [1,2]. The two bimaterial constants ε1 and ε2 as well as the 
eigenvectors w, w4 and w5 are determined by the eigenvalue problem 
 wWwD β−=− i1 , (18) 
with D=Re(H) and W=Im(H) being the real and the imaginary part of the matrix H. The eigenvalue 
β is either real or purely imaginary and related to the bimaterial constants by 
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As shown by Eq. (16) the generalized crack-opening-displacements (CODs) in the crack-tip vicinity 
of interface cracks between two dissimilar linear magnetoelectroelastic materials show 
ar1/2±iε-oscillating behavior and additionally a non-oscillating r1/2±ε-behavior. A similar behavior is 
known for interface cracks between two dissimilar piezoelectric materials [8]. This makes an 
implementation of special spatial crack-tip shape functions rather difficult. For this reason, only 
standard linear elements near the tips of interface cracks are used in this analysis. To minimize the 
numerical errors, a displacement-based extrapolation technique is applied to calculate the dynamic 
intensity factors from the numerically computed generalized crack-opening-displacements (CODs). 
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6. Numerical examples 
 
In this section, numerical examples are presented and discussed to show the effects of the coupled 
fields, the interface, the material combinations and the dynamic loading on the dynamic intensity 
factors (IFs). The following loading parameters are introduced in order to measure the intensity of 
the electric and magnetic loading 
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where σ0, D0 and B0 are the mechanical, electric and magnetic loading amplitudes. For convenience 
of the presentation, the real part K1 and the imaginary part K2 of the complex dynamic stress 
intensity factors as well as the electric displacement intensity factor K4 and the magnetic induction 
intensity factor K5 of the interface crack are normalized by 
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with aK 00 πσ=  and a is the half-length of an internal interface crack. 
 
In the example we consider a central interface crack of length 2a in a rectangular, layered, 
anisotropic and linear magnetoelectroelastic plate with the poling direction normal to the interface 
crack as shown in Figure 2.  
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Figure 2. An interface crack in a rectangular layered magnetoelectroelastic plate 

 
The cracked plate is subjected to an impact tensile loading σ(t)=σ0H(t), an impact electric loading 
D(t)=D0H(t) and an impact magnetic loading B(t)=B0H(t), where H(t) denotes the Heaviside step 
function. The geometry is determined by h=20.0mm, w=10.0mm and 2a=4.8mm. The spatial 
discretization of the external boundary and the interface is performed by an element-length of 
1.0mm. Each crack-face is approximated by 20 elements and a normalized time-step of cLΔt/h=0.05 
is chosen, where cL is the quasi-longitudinal wave velocity. Numerical calculations are carried out 
for BaTiO3-CoFe2O4 composite, with BaTiO3 being its piezoelectric phase and CoFe2O4

 

 its 
piezomagnetic phase. The magnetoelectroelastic material for the domain I has the constants 

GPa0.226C11 = ,  GPa0.125C12 = ,  GPa0.216C22 = ,  GPa0.44C66 = , 
 2

16 m/C8.5e = ,  2
21 m/C2.2e −= ,  2

22 m/C3.9e = , 
 )Am/(N0.275h16 = ,  )Am/(N2.290h21 = ,  )Am/(N0.350h22 = , 
 )GNm/(C4.56 22

11 =ε ,  )GNm/(C5.63 22
22 =ε , 

 )GAV/(N005367.011 =β ,  )GAV/(N7375.222 =β , 
 2

11 MA/N0.297=γ ,  2
22 MA/N5.83=γ , (22) 



13th International Conference on Fracture 
June 16–21, 2013, Beijing, China 

-6- 
 

while for domain II the material constants  
 GPaC 0.26011 = ,  GPaC 0.15012 = ,  GPaC 0.24822 = ,  GPaC 0.4566 = , 
 2

16 /3.2 mCe = ,  2
21 /9.0 mCe −= ,  2

22 /7.3 mCe = , 
 )/(0.44016 AmNh = ,  )/(2.46421 AmNh = ,  )/(0.56022 AmNh = , 
 )/(0.23 22

11 GNmC=ε ,  )/(9.25 22
22 GNmC=ε , 

 )/(0028.011 GAVN=β ,  )/(0.222 GAVN=β , 
 2

11 /0.473 MAN=γ ,  2
22 /6.127 MAN=γ , (23) 

are applied. The numerical results of the present time-domain BEM obtained for different loading 
combinations and the application of material (22) for both layers are presented in Figure 3. This 
special case is equal to an interior crack inside a homogenous magnetoelectroelastic plate and the 
intensity factors are given in [9]. The normalized dynamic intensity factors for the interface crack 
are shown in Figure 4. 
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Figure 3. Normalized dynamic intensity factors for an interior crack subjected to different loadings 
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Figure 4. Normalized dynamic intensity factors for an interface crack subjected to different loadings 
 
The normalized dynamic mode-I, mode-IV and mode-V intensity factors for an interior crack in a 
homogenous magnetoelectroelastic plate as well as the real part of the complex intensity factor, the 
electrical displacement intensity factor and the magnetic induction intensity factor for the interface 
crack obtained by the present TDBEM have a similar global behavior. The mode-II intensity factors 
vanish, since no shear stress components are induced for all applied loadings in the case of a 
transversely isotropic material behavior. In contrast, the crack opening and sliding modes I and II 
are coupled each other for the interface crack and therefore the imaginary part of the complex 
intensity factor is unequal zero. It can be observed that, when an electric and magnetic impact is 
applied, the normalized dynamic mode-I stress intensity factor and the complex stress intensity 
factor start from a non-zero value at t=0. This is due to the quasi-static assumption on the 
electromagnetic fields, which implies that the cracked magnetoelectroelatic plate is immediately 
subjected to an electromagnetic wave and therefore the crack opens at t=0. In contrast, the elastic 
waves induced by the mechanical impact need some time to reach and excite the crack, as clearly 
observed for the case χe=χm=0. It should further be mentioned here, that the applied electric and 
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magnetic loading may lead to a physically meaningless crack-face intersection in different time 
ranges for the case χe=χm=1. This requires an advanced iterative solution procedure for the 
crack-face contact analysis which is not considered in this work. The peak values of the normalized 
dynamic intensity factors decrease with increasing electric and magnetic loading amplitudes. 
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