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Abstract  In this paper, the dynamic thermal stresses around a crack in a substrate bonded to a coating are 
obtained using the hyperbolic heat conduction theory. Fourier and Laplace transforms are applied and the 
hyperbolic heat conduction and thermo-elastic crack problems are reduced to solving singular integral 
equations. The crack kinking phenomenon under thermal loading is investigated by applying the criterion of 
maximum hoop stress. Numerical results show that the hyperbolic heat conduction parameters, the material 
properties and the geometric size of the composite have significant influence on the dynamic stress field. It 
seems that high temperature loading on the surface may lead to crack kinking away from the surface and low 
temperature loading may cause crack kinking toward the coating. Moreover, the hyperbolic heat conduction 
theory may give more conservative results than that the Fourier’s heat conduction theory. 
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1. Introduction 
 

 High-rate heat transfer has become a major concern in modern industries especially in material 
processing, such as the pulsed laser heat and ultrasonic waves, and accurate heat conduction 
analysis is of great importance for the material and structural integrity. Investigation of the 
temperature and stress fields is essential to the safety design of the composite structures under 
severe temperature loading. The Fourier heat conduction model, although give sufficient accuracy 
for many engineering applications, implies infinite thermal wave propagation speed, and renders 
ineffective at the very small length and time scales associated with small-scale systems [1]. 
Consideration of the hyperbolic heat conduction model becomes important if irreversible physical 
processes, such as crack or void initiation in a solid, are involved in the process of heat transport. In 
these cases, the hyperbolic heat conduction model should be used [2].  

Inherent defects in materials such as dislocations and cracks may disturb the temperature 
distribution when thermal loading is applied, and singularities may be developed in the 
neighborhood of discontinuities. The singular behavior of temperature gradient around crack tip has 
been studied based on the classical Fourier heat conduction model [3]. Some investigations on crack 
problems in thermo-elastic materials have been made using the hyperbolic heat conduction model. 
The problem of a finite crack in a material layer under transient non-Fourier heat conduction was 
investigated by Wang and Han [4] and the problem of an interface crack in layered composite media 
under applied thermal flux was studied using the hyperbolic heat conduction theory [5]. A 
thermo-elastic analysis of a cracked substrate under a thermal shock was given in Chen and Hu [6] 
based on the hyperbolic heat conduction theory; and based on the same theory the transient 
temperature and thermal stresses around a partially insulated crack in a thermoelastic strip under a 
temperature impact were obtained [7]. The transient temperature field around a thermally insulated 
crack in a substrate bonded to a coating has been obtained by using the hyperbolic heat conduction 
model [8]. 



13th International Conference on Fracture 
June 16–21, 2013, Beijing, China 

-2- 
 

The thermo-elastic problem of a cracked substrate bonded by a coating under transient thermal 
loading is studied in this paper using the hyperbolic heat conduction model. Fourier and Laplace 
transforms are employed to reduce the problem to solving singular integral equations. The 
asymptotic fields around the crack tip are obtained in an explicit form and Laplace inversion is 
applied to get the dynamic temperature and stress fields. The crack kinking phenomenon is 
investigated by applying the criterion of maximum hoop stress. 
 
2. Statement of the problem and basic equations 
 
   Consider a thermoelastic substrate containing a crack of length c2  parallel to the interface 
between the substrate and the coating, as shown in Figure 1. The composite is initially at certain 
temperature and the free surface of the coating )( bahy +−=−=  is suddenly heated to by a 
temperature change 0T . The crack surfaces are assumed to be thermally insulated.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Crack geometry and coordinates. 
 
 
2.1. Heat conduction equations 
 

In the heat-transfer situations include extremely high temperature gradients, extremely large 
heat fluxes or extremely short transient durations, the Fourier’s law may be modified to a relation of 
the type [9], 

Tk
t
qq ∇⋅−=
∂
∂

+τ                                  (1) 

where q  is the heat flux, T  is the temperature, k  is the thermal conductivity of the material, ∇  
is the spatial gradient operator, and τ  is the so-called relaxation time. The local energy balance 
equation with vanishing heat source follows: 

t
TCq
∂
∂
⋅=∇− ρ                                   (2) 

where ρ  and C  are the mass density and the specific heat capacity, respectively. Incorporating 
Eq. (1) with Eq. (2) leads to the hyperbolic heat conduction equation for the substrate and the 
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coating, 
2)(2)()(2 tTtTTd i

i
ii

i ∂∂+∂∂=∇⋅ τ ,        ( 2,1=i )               (3) 

where 2∇  is Laplace’s differential operator, iτ , ( )iiii Ckd ρ=  and ik  ( 2,1=i ) are the 

relaxation times, the thermal diffusivities and the thermal conductivities of the substrate and the 

coating, respectively. It is noted that here and afterwards the subscript “ 2,1=i ” denote the 

quantities of the substrate and the coating, respectively. 
By introducing the dimensionless variables 
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where 0T  is the reference temperature and 0d  is the reference thermal diffusivity, the governing 

equations (3) have the following dimensionless forms: 
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It is noted that here and afterwards, the hat “
_

” of the dimensionless variables is omitted for 

simplicity. The hyperbolic heat equation (5) is subjected to the following boundary and initial 
conditions in dimensionless forms 
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   It should be noted that the relaxation time (τ ) for most engineering materials are of the order of 
614 1010 −− − s  and the thermal diffusivity 38 1010 −− − sm 2 , and therefore the Fourier parabolic 

heat conduction model can give good results. Experiments have shown that some special materials 
may have thermal relaxation time up to the order of 10s, which are important materials to work as 
thermal insulators [10]; in this case it is necessary to take into account the effect of the relaxation 
time and use the hyperbolic heat conduction model. Other applications of hyperbolic heat 
conduction model are in the area of transient thermal disturbance with small length and time scales. 
 
2.2. Thermal-elastic field equations 
 

The equilibrium equations, the strain-displacement relations, the compatibility equation and the 
constitutive law of plane stress thermoelasticity can be expressed as follows,  

0=∂∂+∂∂ yx xyx σσ , 0=∂∂+∂∂ yx yxy σσ                      (8) 
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( ) 2,, xvyuyvxu xyyx ∂∂+∂∂=∂∂=∂∂= εεε                   (9) 

yxxy xyyx ∂∂∂=∂∂+∂∂ εεε 22222 2                          (10) 

ETETE xyxyxyyyxx σνεανσσεανσσε )1(,)(,)( +=+−=+−=            (11) 

where E , ν  and α  are Young’s modulus, Poisson’s ratio and the coefficient of linear thermal 
expansion, respectively.  

Let ),( yxU  be the Airy stress function, then the stresses can be expresses in terms of U  as 

yxUxUyU xyyx ∂∂∂=∂∂=∂∂= 22222 ,, σσσ                       (12) 

Substitution of Eq. (12) into (10) and (11) leads to 

( ) 0222 =∇⋅+∇∇ TEU α                                   (13) 

By introducing the following dimensionless quantities 
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the governing equations (13) can be rewritten in the following dimensionless forms: 

( ) 0222 =∇+∇∇ TU                                     (15) 

The mechanical boundary conditions can be expressed as 
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3. Temperature field 
 

Apply Laplace transform to Eqs. (5): 
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where Br  stands for the Bromwich path of integration, and assume the composite is at rest in the 
beginning, we have: 

*)(2*)(*)(2 i
i

i
i

i TpBpTAT +=∇ ,       ( 2,1=i )                    (20) 

where ii ddA 0=  and iii dcdB 22
0τ=  ( 2,1=i ). 

Following the procedure in Chen and Hu [8], the temperature field in the Laplace domain 
satisfying the boundary condition and regularity condition can be expressed as 
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where ),()( pEE ii ξξ =  ( 3,2,1=i ) and ),()( pDD jj ξξ =  ( 2,1=j ) are unknowns to be 

determined, and 
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   Constants 0
1C , 0

2C  and f  can be obtained from the boundary conditions. As the unknown 

functions are dependent, all other unknown functions can be expressed by only one independent 

unknown function, for example )(1 ξD , as follows  

[ ])(2exp)()( 12 banDD +−= ξξ                             (26-1) 

[ ] )()()(),()()(),()()()( 1231121121 ξξλξξξλξξξλξλξ DEDEDE ==−=        (26-2) 

2)()exp()(,2)()exp()( 212211 ααξλααξλ −−=+= rhra                (26-3) 
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Introduce the temperature density function as 

xpxTxpxTpxx ∂∂−∂∂== −+ ),0,(),0,(),()( *)1(*)1(φφ                     (27) 

It is clear from the boundary conditions (27) that 
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c
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Substituting (21) and (22) into (27) and using Fourier inverse transform, we can get 

dsiss
i
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Substituting (21) and (22) into (7) and applying the relation (29), we get the singular integral 
equation for )()( ctt φϕ =  as follows 

( ) ( )[ ] )1(,2,)(1
1
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where the kernel function ),( txK  is given as 
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and ξλλλξ 121 )()( −= rR . The singular integral equation (30) under the single-valuedness 

condition in (28) has the following form of solution [11]: 
21)()( xxx −Ψ=ϕ ,   1<x                               (32) 

where )(xΨ  is a bounded and continuous function. From the condition (28), it is clear that )(xΨ  
is an odd function of x , i.e., )()( xx Ψ−=−Ψ .  
   Function )(xΨ  can be solved numerically, as detailed in Chen and Hu [8], and function 

)(1 ξD  can be calculated by using the Chebyshev quadrature for integration as 
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By substituting Eq. (33) into (21)-(23) the temperature in the Laplace domain can be obtained. 
The temperature in the time domain can be determined by applying the Laplace inverse transform. 
 
4. Thermal stress field 
 
   Considering the temperature expressions (21-23), the general solution of the Airy function 
satisfying the regular condition at infinity can be expressed as 
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where iB , iC  ( 41−=i ), 1A  and 2A  are unknowns to be determined, and )(ξijG  

)2,1,31( =−= ji  are known functions determined from the boundary conditions. 

Denote the jumps of displacement across the plane 0=y  by u  and v , 

),0,(),0,(),,0,(),0,( pxvpxvvpxupxuu −+−+ −=−=                   (37) 

Following the procedure in Jin and Noda [12] and introducing two dislocation density functions 

)(xf j  ( 2,1=j ) as 
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xvpxfxfxupxfxf ∂∂==∂∂== ),()(,),()( 2211                    (38) 

By applying the boundary conditions (16-18), it can be shown that  )(xf i  ( 2,1=i ) satisfy the 

following singular integral equations: 
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where functions )2,1,(),(),( =jitxMxU iji are known functions. Functions )(xf j  ( 2,1=j ) also 

need to satisfy the single-valuedness conditions 

0)( =∫− xdxf
c

c j ,            ( 2,1=j )                        (40) 

The solution of the integral Eqs. (39), )(xf j  ( 2,1=j ), can be expressed as follows 

21),()( tptFctf jj −= ,    ( 2,1=j )                        (41) 

and the singular integral equations can be reduced to solving a system of algebraic equations in 

terms of ),(1 ptF  and ),(2 ptF , see [6, 7]. 

   Following the procedure in Chen and Hu [9], the stress intensity factors (SIFs) )(*
1 pK  and 

)(*
2 pK  are obtained as 
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and the dynamic singular stresses near the crack tip are 
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where the dynamic SIFs )(1 tK  and )(2 tK  are given by 
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and ),( θr  are the polar coordinates measured from the crack tip defined by 
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   The hoop and shear stresses at an angle θ  near the crack tip can be obtained in terms of the 
polar coordinates ),( θr  as 
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   The hoop stress intensity factor and shear stress intensity factor associated with the hoop and 
shear stresses at an arbitrary angle θ  can be defined as: 

( ) ( )θθθθθθ σσ rrrr
rKrK 2lim,2lim

00 →→
==                         (49) 

 
5. Numerical results and discussion 
 
   The effect of the thickness of coating cb  on the dynamic SIFs is shown in Figure 2 when the 
geometry of the cracked substrate is 1=ca , the material properties are 121 == kk , 4.0=ν  and 

5.0,1 21 == ττ  and the boundary temperature condition 10 +=T . The SIFs oscillate and increase 
in magnitude till they reach the peak values and oscillate for some time before approaching their 
static values. The magnitude of the peak value decreases as the size ratio cb  increases, which 
indicates that a thicker coating may decrease the magnitude of SIF. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Effect of cb  on the dynamic SIFs when 1=ca . 
 
 
   Figure 3 exhibits the variation of the dynamic SIFs with different thermal relaxation times 1τ  
and 2τ  when 121 == kk , 4.0=ν , 5.0,1 == cbca  and 10 +=T . The results based on the 
Fourier heat conduction is the special case when 021 ==ττ , which shows that the dynamic SIF 
increases smoothly to reach the peak values and then decrease to the static values. The oscillating 
feature of the dynamic SIFs is observed when the hyperbolic heat conduction theory is applied, and 
as the relaxation time of the coating decreases the magnitude of the dynamic SIF decreases. This 
conclusion indicates that the structure safety design based on the hyperbolic heat conduction theory 
may lead to more conservative design than Fourier’s heat conduction theory. 
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Figure 3. Effect of relaxation time on dynamic SIFs. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Angular functions of the normalized hoop stresses and shear stresses at a time instant.  
 
 
 
   The angular functions of the normalized dynamic hoop stresses crπσθθ 2  and shear stresses 

crr πσ θ 2  at a specific time instant 0.3=t  are displayed in Figure 4 when 1.0,1 == cbca , 
121 == kk  and 4.0=ν . The maximum hoop stress criterion is used to study crack kinking in this 

paper. It is shown that when the hoop stress reaches the maximum value, the shear stress is zero. 
When the temperature loading on the surface of the coating is positive, the maximum hoop stress 
appears at the angle 60+=θ  degrees, which indicates that the crack may kink in this direction; 
when a negative temperature is applied on the coating surface, the hoop stress reaches the maximum 
value at the angle 70−=θ  degrees, which means that the crack may kink toward the coating in 
this direction. It seems that high temperature loading on the surface may lead to crack kinking away 
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from the surface and low temperature loading may cause the crack to kink toward the coating. 
 
6. Conclusions 
 
   The transient thermal stresses around a crack in a substrate bonded to a coating have been 
obtained using the hyperbolic heat conduction theory. Integral transform method is applied and the 
hyperbolic heat conduction and thermo-elastic crack problem are reduced to solving singular 
integral equations. The crack kinking phenomenon is investigated by applying the criterion of 
maximum hoop stress. Numerical results show that the hyperbolic heat conduction parameters, the 
material properties and the geometric size of the composite have significant influence on the 
dynamic stress field. Hot or cold temperature loadings may lead to different crack kinking 
directions. The results predicted by the hyperbolic heat conduction model are more conservative 
than that by the Fourier’s heat conduction model. 
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