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Abstract A two-dimensional electroelastic fracture analysis is performed on a plane piezoelectric 
material by the finite element model based on fundamental solution approximation. In the present 
element model, the fundamental solution of the piezoelectric problem is employed to construct the 
intra-element fields to make the final stiffness equation containing element boundary integrals only. 
Solving the stiffness equation can yield nodal displacement and electric potential, which are in turn 
used to evaluate the stress intensity factor and electric intensity factor by way of extrapolation 
techniques. Numerical results are provided to show the accuracy of the present method. 
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1. Introduction 
 
Fracture analysis of piezoelectric materials is important for enhancing our understanding on 
the effect of the coupling properties on their fracture or damage behavior [1,2]. Because of 
complicated inherent coupling between electric and mechanical behaviors in piezoelectric 
solids, numerical simulation techniques have been widely employed for the fracture analysis 
of piezoelectric materials under complicated electric and mechanical load conditions. For 
example, finite element method [3, 4], boundary element method [5, 6], hybrid Trefftz finite 
element method [7,8], meshless methods [9], and virtual boundary integral method [10] have 
been developed for solving crack problems of piezoelectric materials.  
   In the paper, the hybrid finite element method developed recently by Wang and Qin [11-14] 
is extended to the case of cracked piezoelectricity. Different to other hybrid methods like the 
Trefftz finite element method [15-18], the basic idea of the proposed finite element model is 
the use of the novel interpolation kernels composed of fundamental solutions (or Green’s 
functions) inside the multi-edge element to achieve the purpose of analytical satisfaction of 
governing equations of the problems of interest, and then the element stiffness equation 
which includes element boundary integrals only are formed for solving the electroelastic 
behavior. 
  In this work, the hybrid finite element method is extended for solving the piezoelectric 
problems. Using the fundamental solutions of piezoelectric problems, the intra-element 
displacement and electric potential fields are constructed. A modified variational functional is 
introduced to produce the linkage between intra-element and boundary fields. The 
minimization of the functional yields the stiffness matrix equation. As a result, the nodal 
displacements and electric potential can be determined by solving the linear stiffness 
equation. In the fracture analysis, the present hybrid finite element model is used to determine 
the displacement and electric potential distribution in the vicinity of the crack tip and then the 
stress and electric intensity factors can be obtained using the extrapolation technique [19]. 
 
2. Basic equations 
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For the transversely isotropic piezoelectric material, if the x-y plane is considered as the 
isotropic plane and the polarizing direction is assumed along the z-direction, one can employ 
either x-z or y-z plane to study the piezoelectric behavior. Here a plane piezoelectric media in 
the x-z plane is considered. In the absence of body forces and body electric charges, the 
equilibrium equations are given by [20] 
 , 0,                       0ij j i,iD    (1) 

where ( , , )ij i j x z   and iD  are stress tensor and electric displacement in the i-direction, 

respectively. 
With plane strain assumption ( 0yy xy yz yE      ), the constitutive equations in the xz 

system can be expressed as 
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where ij  and iE  denote the strain tensor and electric field in the i-direction, respectively. ijc , 

ije  and ij  stand for two dimensional material elastic, piezoelectric and dielectric coefficients. 

For the case of plane stress, the constitutive equation can be obtained similarly [20]. 
The remaining elastic strain-displacement and electric field-potential relations are given by 

 , , ,

1
( ),        

2ij i j j i i iu u E      (3) 

where iu  and   are elastic displacement in the i-direction and electric potential, respectively. 

The following boundary conditions are admissible on the boundary of the piezoelectric 
medium 
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in which the components with an over bar denote specified values, and in  is the i-component 

of outward unit normal vector. 
 
3. Stress and electric intensity factors for plane piezoelectric crack  
Now let us consider a crack embedded in an infinite plane piezoelectric solid, the origin of 
the local coordinate system is at the crack tip to be analyzed. Along the crack surface, the 
traction and normal electric displacement are free. According to Sosa’s work [19] based on 
Lekhnitskii theory, the displacement components and electric potential along the upper crack 
surface near the crack tip can be written as 
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 (5) 
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where I II EK ,K ,K  are respectively stress and electric intensity factors and r  is the distance 

from the crack tip. In Eq. (5), the coefficients , ,i i ip q   and jk  can be found in Sosa’s work 

[19]. 
  From Eq. (5), it can be seen that the accuracy of displacement and electric potential can 
affect the results of stress and electric intensity factors. Therefore, developing new numerical 
approaches to achieve high accuracy of displacements and electric potential is important. The 
obtained numerical results below demonstrate that the proposed hybrid finite element 
formulation can serve for this purpose.  
4. Hybrid finite element formulation 
Consider a 2D electro-mechanical coupling problem, the energy functional used for 
constructing the proposed finite element model is given by 

1
( )d d d ( )d ( )d
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in which ,  iu   and ,  iu   are the displacement components and electric potential respectively 

defined along the element boundary and inside the element domain. 
    In the present hybrid finite element model, the intra-element fields like displacement and 
electric potential inside the element can be approximated using the combination of the 
fundamental solution at different source points (the fundamental solution can be derived by 
either Lekhnitskii’s formalism [21, 22] or Stroh’s formalism [5]): 
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is the interpolation matrix and 
 T

11 21 31 1 2 3[ ... ]
s s se n n nc c c c c cc  (9) 

is the unknown coefficient vector. * ( , )ij sku x y  and *( , )j sk x y  are induced displacement 

fundamental solutions at field point x  due to a unit concentrated point load applied in the j-
direction ( 1, 2j  ) and unit electric charge ( 3j  ) at source point sky

 ( , ;  1, 2, , )si x z k n   . 

  Whilst, the frame displacement and electric potential over the element boundary can be 
defined by 
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where eN  is the matrix of shape functions which is that same as those used in the 

conventional finite element method and boundary element method. ed  stands for the vector 

of the nodal displacements and electric potential. 
Applying the Gauss theorem to the functional (6) and making use of the intra-element 

fields (7) and frame fields (10) yields 
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In Eq. (12), the matrix eQ  is a coefficient matrix in terms of intra-element traction and 

electric displacement induced by intra-element fields, that is 
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which can be derived from the assumed displacement and electric potential (7). 
  With the stationary condition of the functional (11), we finally have 
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5. Numerical example 

In this section, to investigate the performance of the present hybrid finite element formulation 
for the simulation of piezoelectric fracture behavior, a plane piezoelectric prism under 
uniform tension is considered with an embedded central crack and traction- and electric 
charge-free conditions are assumed along the crack surface (see Figure 1). Due to symmetry 
of the problem, only one quarter of the prism modeled, i.e. the shaded domain in Figure 1. 
The proper symmetrical mechanical boundary conditions should be applied along the 
symmetric lines x=0 and z=0 and the electric potential along the symmetric line z=0 is 
assumed to be zero. The plane strain case is assumed here and the PZT-4 material used in the 
computation has the following material constants [22] 
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Firstly, to verify the present algorithm and show the accuracy of displacements and electric 
potential, the case without the crack is taken into consideration and the analytical results can 
be found in [22]. In the computation, thirty 8-node quadrilateral elements are used for the 
present hybrid finite element model (see Figure 2a). The results of displacements and electric 
potential at specific points are tabulated in Table 1, from which it’s found that the numerical 
results from the proposed algorithm are in good agreement with the analytical results. Thus, 
the developed hybrid finite model can produce highly accurate displacement and electric 
potential results, which are important for the evaluation of stress intensity factors by 
displacement and electric potential extrapolation technique in the following analysis. 
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(a)                            (b) 
Figure 1 Geometry and boundary 

conditions of the piezoelectric prism with a 
central crack 

Figure 2 Mesh configurations: (a) without 
central crack (b) with central crack 

 
 

Table 1 Comparison of the numerical results by the present algorithm and the analytical solutions 

Position 
Analytical solutions Numerical results 

xu  zu    xu  zu    

(2, 0) -0.7222E-10 0 0 -0.7222E-10 0 0 

(3, 0) -1.0832E-10 0 0 -1.0832E-10 0 0 

(0, 5) 0 3.915E-10 1.2184 0 3.915E-10 1.2184 

(0,10) 0 7.829E-10 2.4367 0 7.829E-10 2.4367 

 
Next, fracture analysis of the prism is considered and the corresponding mesh 

configuration is shown in Figure 2b, in which total 287 piezoelectric quadrilateral elements 
are used. The numerical results for crack is tabulated in Table 2, from we can find the 
displacement variation along the upper surface of the crack, also the corresponding electric 
displacement stress intensity factors 6 3/2

EK 10 (Cm )   can be evaluated by Eq. (5). The 

average value of it is 28.753. 
 

Table 2 Variations of displacement and Stress intensity factor near the crack tip 

r  0.01 0.02 0.03 0.04 0.05 

xu  -20.326E-12 -19.262E-12 -18.442E-12 -17.817E-12 -17.031E-12

zu  17.901E-12 25.352E-12 31.050E-12 35.792E-12 39.651E-12
  0 0 0 0 0 

6
EK 10  28.793 28.834 28.834 28.784 28.521 
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6. Conclusions 

In the paper, a new hybrid finite element formulation is present for performing fracture 
analysis of piezoelectric media using fundamental solution approach. The hybrid 
piezoelectric element established in the present method contains element boundary integrals 
only. Numerical verification is conducted by analysing electroelastic behavior of plane 
piezoelectric prism without any internal crack. It is found that the developed hybrid finite 
model can produce relatively high accurate displacement and electric potential results. 
Subsequently, the fracture analysis is performed by considering a central crack in the 
piezoelectric prism and the corresponding electric displacement stress intensity factors is 
evaluated by using the extrapolation technique in the vicinity of crack tip. 
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