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Abstract  This paper reports the authors’ recent work on mixed-mode fracture in fiber-reinforced laminated 
composite beams and plates. The work considers the so-called one-dimensional fracture which propagates in 
one-dimension and consists of only mode I and mode II fracture modes. Fracture interfaces are assumed to 
be either rigidly or cohesively bonded. Analytical theories are developed within the contexts of both classical 
and first-order shear deformable laminated composite theories. When a rigid interface is assumed for brittle 
fracture, there are two sets of orthogonal pure modes in classical theory, and there is only one set of 
orthogonal pure modes in shear-deformable theory. A mixed-mode fracture is partitioned by using these 
orthogonal pure modes. The classical and shear deformable partitions can be regarded as either lower or 
upper bound partitions for 2D elasticity, and hence approximate 2D elasticity partition theories are developed 
by ‘averaging’ the classical and shear deformable partitions. When cohesively bonded interfaces are assumed 
for adhesively joined interfaces, the classical and shear deformable theories give the same pure modes. 
Approximate partition theories are also developed for 2D elasticity. Numerical investigations demonstrate 
excellent agreement with the corresponding analytical theories. Experimental data considered shows that the 
failure locus is strongly linear. 
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1. Introduction 
 
Delamination is a major concern in the application of laminated composite materials. Although it 
occurs often together with other fracture modes such as fiber breakage, matrix cracking and 
intra-laminar cracking, pure delamination is always an important research topic which provides 
insight and understanding of lamina interfacial mechanics, and it often occurs in one-dimensional 
delamination. A delamination is called one-dimensional when its crack front propagates only in one 
direction. Familiar examples are through-width delamination in laminated composite beams, 
circular ring shape delamination in laminated composite plates and shells, etc., as shown in Fig. 1. 
A distinct feature of one-dimensional delamination is that it usually consists of only the mode I and 
mode II fracture modes without any mode III. The study of one-dimensional delamination is of 
great importance for several reasons. It is the most fundamental problem in the fracture mechanics 
of materials. It is often used in experimental tests, such as the double cantilever beam (DCB), 
end-loaded split (ELS) and end-notched flexure (ENF) tests, to obtain the critical energy release 
rate (ERR) or toughness of a lamina interface in either pure mode I or mode II delamination. In the 
case of a mixed mode, it is often used to investigate delamination propagation criteria. Moreover, 
many practical cases of delamination in structures made of fiber-reinforced laminated composites 
can be approximated as one-dimensional. For example, the separation of stiffeners and skins in 
stiffened plate or shell panels made of laminated composite materials can be approximated as 
one-dimensional through-width delamination, and the separation of two material layers in laminated 
composite plates and shells in a drilling process can be approximated as one-dimensional circular 
ring-type delamination, etc. 
 
Because of its importance, one-dimensional delamination has attracted the attention of many 
researchers including many of the world leaders in the areas of fracture mechanics and composite 
materials. The primary goal is to develop analytical theories to determine pure delamination modes 
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Figure 1. Some examples of one-dimensional fracture. 

 

and then to partition a mixed mode into pure modes. Delamination propagation criteria can then be 
established by using the partition together with experimental data. The through-width delamination 
in a DCB made of isotropic material with rigidly bonded interface can be considered to be the 
‘simplest’ one-dimensional delamination. Although it seems to be a straightforward matter to 
determine the pure modes and to partition a mixed mode, it has been proved to be an extremely 
complex and sophisticated problem. There has been a lot of confusion on the matter during the last 
25 years. Ref. [1] may be the earliest work on the ‘simplest’ problem by Williams. A mixed-mode 
partition theory [1] was developed based on classical beam theory. Ref. [2] reported a combined 
numerical and analytical theory by Schapery and Davidson based on combined classical beam 
theory and 2D elasticity. It disagrees with the Williams’ theory [1] and concludes that classical 
beam theory does not provide quite enough information to obtain an analytical decomposition of the 
mixed-mode ERR into its opening and shearing mode components. Hutchinson-Suo reported their 
work in Ref. [3] in which the mixed-mode ERR is calculated based on the classical beam theory but 
the partition of ERR is calculated based on stress intensity factors from 2D elasticity. Their theory 
[3] agrees well with the theory in Ref. [2] and claims that Williams’ theory [1] contains conceptual 
errors. To respond to this claim, Williams reported some experimental work in Ref. [4] showing that 
Williams’ theory [1] is in a better agreement with the test results than Hutchinson-Suo theory [3]. 
This has caused a lot of confusion, which has affected many academic researchers and design 
engineers until today. A great deal of research effort has been made during the last two decades to 
resolve the confusion. Among many others, the following significant works are referenced here. Ref. 
[5] reported a mixed-mode partition theory for laminated composite beams with rigidly bonded 
interface based on first-order shear-deformable beam theory, which gives different mixed-mode 
partitions to those from Williams’ theory [1] and the Hutchinson-Suo theory [3]. The same theory as 
that in Ref. [5] was derived in Refs. [6, 7] but these are based on classical beam theory, which 
caused yet more confusion. Recently, the authors have developed analytical theories for 
one-dimensional delamination in laminated composite beams and plates by using a novel 
methodology [8–13]. All the confusion is explained. This paper reports some of the major results in 
Refs. [8–13]. 
 
2. Partition of mixed-mode fracture in laminated composite beams and plates 
with rigid interfaces 
 
The mechanics of delamination depend on the mechanical properties of lamina interfaces. A lamina 
interface is considered to be a rigid interface when the interface separation is negligible before an 
existing delamination propagates. Otherwise, it is considered to be a non-rigid interface or as it 
often called, a cohesively bonded interface. Bare-bonded interfaces in the conventional 
manufacturing process from glass or carbon fiber epoxy pre-pregs are typical rigid interfaces 
because of their brittleness. While cohesively bonded interfaces are typical non-rigid interfaces 
which are achieved by adding adhesive layers between bare plies when manufacturing components. 
 
2.1. Laminated composite DCBs 
 
A laminated composite DCB with a delamination of length  is shown in Fig. 2 (a). The interface 
stresses in Fig. 2 (b) only show the sign convention rather than any representative distribution. 
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Figure 2. A laminated composite DCB and its loading conditions. (a) General description. (b) Details of the 

crack influence region aΔ . 
 
2.1.1. Classical beam partition theory 
 
Using the constitutive relation in classical laminated composite beam theory, the ERR at the crack 
tip at location B, G  is 
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where subscript ‘B’ indicates loads at the crack tip at location B, for example, BM1  is the bending 
moment on the top sub-laminate at the crack tip. These loads are shown in Fig. 2 (b). Other 
quantities in Eq. (1) are 
 iiii DBAA 2−=∗   ,  iiii DABB −=∗ 2   ,  iiii ABDD 2−=∗  (2) 
The range of subscript i  is 1 and 2, which again refers to the upper and lower sub-laminates 
respectively. For the intact laminate, the subscript i  is dropped. A , B  and D  are the 
equivalent extensional, coupling and bending stiffness of the DCB respectively.  
 
A novel methodology to partition mixed-mode ERR G  in Eq. (1) arises from the fact that G  is 
of quadratic form and non-negative definite in terms of the crack tip bending moments BM1 and 

BM 2 , and the crack tip axial forces BN1  and BN2 . An analogy of this is the positive definite 
kinetic energy of a vibrating structure, to which individual modal energies are attributed by using 
modal analysis from orthogonal natural vibration modes. A hypothesis is then made that the total 
ERR in a mixed-mode delamination can be partitioned into pure mode components by using 
orthogonal pure modes. There are two sets of fundamental orthogonal pure modes. The first set 
corresponds to zero relative shearing displacement just behind the crack tip (mode I) and zero crack 
tip opening force ahead of the crack tip (mode II). The second set corresponds to zero relative 
opening displacement just behind the crack tip (mode II) and zero crack tip shearing force (mode I). 
It is simple to derive the zero relative displacement modes first and then to find the zero force 
modes by applying orthogonality through Eq. (1). An alternative and more complex derivation 
considers the interface stresses. If the mode vector form is { }T

BBBB NNMM 2121 ,,, , then the first set 
of fundamental orthogonal pure modes, referred to as the { }βθ , set, are found to be 
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with 
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The second set of fundamental orthogonal pure modes, referred to as the { }βθ ′′,  set, has the same 
format as that of the first set in Eq. (3), but with 
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Any four fundamental pure modes from either the first set or the second set can be used to partition 
a mixed mode. The partitions are given below. 
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where 
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The partitions in Eqs. (8) and (9) use both sets of orthogonal pure modes. The partition theory in 
Ref. [1] only gives the { }11, βθ ′′  pure modes correctly. The partition theories derived in Refs. [6,7] 
is equivalent to using only the first set of pure modes to partition a mixed-mode. The methodologies 
used in Refs. [6,7] are not able to find the second set of pure modes. The partitions are easily 
reduced for isotropic materials. With a thickness ratio 12 hh=γ  now introduced, they are 
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where IEc  and IIEc  are still given by Eq. (10) and γBBBe NNN 211 −= . The pure mode 
relationships are now as follows: 
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The isotropic 
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2.1.2. Shear deformable beam partition theory 
 
In the absence of crack tip shear forces, the total ERR G  in a mixed-mode fracture is still given by 
Eq. (1) within the context of the first order shear deformable laminated composite beam theory. 
However, the two sets of fundamental orthogonal pure modes now coincide at the first set, i.e. the 
{ }βθ ,  set and the partitions of the total G  are given by 
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When crack tip shear forces BB PP 21 ,  are present, the following two terms need to be added to the 
mode I ERR in Eq. (17): 
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where 1H  and 2H  are the through-thickness shear stiffnesses and 
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In the case of layered isotropic DCBs, these partitions reduce to 
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The mode I contribution from crack tip shear forces reduces to 
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2.1.3. 2D elasticity partition theory 
 
One averaged partition theory is obtained by averaging the classical and shear deformable partitions. 
This partition has been found to give an excellent approximation to the partition from 2D elasticity. 
The mode I and II components of the ERR from the averaged partition theory denoted by IG  and 

IIG  respectively. They are 
 ( ) PPITIEI GGGGG

11
2 θθα Δ+++=   ,  ( ) 2IITIIEII GGG +=  (23) 

 
2.1.4. Local and global partition theories 
 
When ERR is calculated right at the crack tip, i.e. using an infinitesimally small region around the 
crack tip, it is called a local calculation. When it is calculated using a finite small region, it is called 
a global calculation. In terms of the finite element method (FEM), an infinitesimally small region 
means one element length in a very fine mesh, whilst a finite small region means multiple element 
lengths. When global ERR calculation is used, the above three local partition theories, i.e. the 
classical, shear-deformable and 2D partition theories give the same partitions as that of the local 
classical partition theory. That is, the classical partition theory unifies the three theories in a global 
partition. The differences between the three local theories arise from the differences of the crack tip 
stresses in the three theories. However, the global distribution of interfacial stresses is governed by 
the classical beam and plate theory. 
 
2.2. Clamped-clamped laminated composite beams 
 
A clamped-clamped composite laminated beam with a symmetric delamination is considered. The 
loads 1P  and 2P  are applied at the mid-span. The pure mode I mode in the first set of orthogonal 
pure modes in classical beam theory, i.e. the { }βθ ,  set, is given by 
 ( ) ( )[ ]2221111212 22 AhBBAhBBPP P −+−== ∗∗θ  (24) 
Its orthogonal pure mode II mode PPP β=12  is too complex to be presented here algebraically. 
The second set of orthogonal pure modes in classical beam theory, i.e. the { }βθ ′′,  set is given by 
 112 −==′ PPPθ   ,  *

1
*
212 DDPP P =′= β  (25) 

Within the context of shear deformable beam theory, the expressions for PPP θ=12  pure mode I 
and PPP β=12  pure mode II are too complex to be presented here algebraically. However, when 
the through-thickness shear effect is not excessively large, they are very close to those in classical 
beam theory. 
 
2.3. Clamped circular layered isotropic plates 
 
A clamped circular layered isotropic plate with a central delamination and central loads 1P  and 2P  
are considered. The first set of orthogonal pure modes in classical plate theory are found to be 
 112 θθ == PPP   ,  112 ββ == PPP  (26) 
where 1θ  and 1β  are given in Eq. (14). The corresponding ERRs are given by 
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The second set of pure mode I and II modes are the same as those in Eq. (15). In the first order 
shear deformable plate theory, the first set of pure modes is approximately pure and the second set 
disappears. 
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3. Partition of mixed-mode fracture in layered isotropic DCBs with non-rigid 
interfaces 
 
3.1. Classical beam partition theory 
 
The mode I ERR IEG  is considered first. The interface normal stress nσ  is found to be 
 [ ] ( ) ( )[ ])3(

1
)4(333

1 213)1(3 uhwEhn γγγγσ −++−=   (28) 
where 21 www −=  and 12 uuu −= are the relative opening and shearing displacements at 
interface. The mode I ERR is then found by using J-integral. 
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Substituting Eq. (28) into Eq. (29) gives 
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The first term IT
L
IE GG =  in Eq. (20) and the )1(

Bw  in the second term is the relative crack tip 
rotation. It is seen that Eq. (30) is not completely analytical due to the second term. It is more 
important to note that the second set of orthogonal pure modes is not present. The mode II ERR can 
be considered similarly. The interface shear stress sτ  is found to be 
 usssPs ττττ σ ++=  (31) 
with 
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01213 σγγτ σ   ,  ( )[ ]γγτ += 14)2(

1 uEhus  (32) 

The mode II ERR IIEG  is then calculated by using J-integral. 

 B

u

sP
L
IIEIIE udGG B

∫+=
0
τ  (33) 

The first term IIT
L
IIE GG =  in Eq. (20) and the second term can be calculated for a given cohesive 

law. 
 
3.2. Shear deformable beam partition theory 
 
It is simple to verify that the mode II ERR IITG  remains the same as the IIEG  in Eq. (33). 
However, the mode I ERR ITG  needs reconsideration. The governing equation for the interface 
normal stress nσ  is 
 ( ) ( )( ))3(

1
)4(2)2( 213 uhwnn γγασλσ −+=−  (34) 

where ( ) ( )( ) 2/12
1 31 EGkh xzγγλ +=  and ( )γγα += 11

2 hGk xz . By using the method of parameter 
variation, the solution to Eq. (34) is found. 

 

( )( ) ( )[ ]
( ) ( ) ⎟

⎠
⎞⎜

⎝
⎛ +−+⎟

⎠
⎞⎜

⎝
⎛ −+

−++++=

∫∫∫∫ −−−−

−

x xxx xxx xxx xx

xx
n

dxeuedxeuehdxewedxewe

huwwecec

001
2

00

3

1
1)2(2

21

4132

213
λλλλλλλλ

λλ

γγαλαλ

γγλασ
 (35) 

The two integration constants 1c  and 2c  are determined using the conditions 
( ) ( ) .0)1( =Δ=Δ aa nn σσ  

 ( ) ( )∫∫
Δ −Δ − −−−=

a xa x dxeuhdxewc
01

2

0

3
1 4132 λλ γγαλαλ  (36) 
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 ( ) ( )∫∫
ΔΔ

−−=
a xa x dxeuhdxewc

01
2

0

3
2 4132 λλ γγαλαλ  (37) 

Then, mode I ERR is found using J-integral. 

 
( ) ( ) ( ) ( )

( ) ( ) 2

2132
2)1(

0

0

1
1

2)1(

0

2

BBBIB

w

I

w

BBB

w

BnmIT

wwwwd

wduhwwdbMG

I

IB

BB

ασσ

γγααλ

σ
σ +−+=

−++−=

∫
∫∫

 (38) 

Note that the first term in Eq. (38) is calculated from a given interface cohesive law with 
( ) ( ) )1(

1
2 213 BnmI uhbM γγαλσ −+−=  in which 

 ( ) BeBBnm NhMMM 1
32

1211
3 ])1(2/[)1()1/()31( γγγβγγ +−+−++=  (39) 

and 
 ( ) ( )22

11
2

1
2

21
2)1( 66 γγγ EbhNhMMu BeBBB ++−=  (40) 

In the case of a rigid interface the first two terms in Eq. (40) disappear and the third term reduces to 
IT

L
IT GG =  in Eq. (20). For a non-rigid interface the first term in Eq. (38) is calculated based on the 

given cohesive law and the second and third terms are not able to be determined analytically. 
However, for most of practical engineering problems with hard interfaces the third term in Eq. (38) 
can be replaced by ITG  in Eq. (20). Therefore,  in Eq. (38) can be calculated by using a given 
interface cohesive law and the following: 

 ( )∫ −= B

IB

w

w BInB
L
IT wdG

σ

σσ  (41) 

Therefore, the second term in Eq. (38) is found and the mode I ERR ITG  for a hard interface is 
obtained analytically. 
 
3.3. 2D elasticity partition theory 
 
A DCB under crack tip bending moments BM1  and BM2  is considered here. Refer to Ref. [12] 
for general loading conditions. By using the two sets of fundamental orthogonal pure modes, i.e. 
{ }βθ ,  in Eq. (14) and { }βθ ′′,  in Eq. (15), approximate orthogonal pure mode I and mode II 
modes are 
 ( ) ( ) ( )( )2321312 log22/1log2/1 erNNNerNNNerN kkk θθθθθθθ +−+−+=  (42) 

 ( ) ( ) ( )( )2321312 log22/1log2/1 erNNNerNNNerN kkk βββββββ +−+−+=  (43) 
where Ekker /=  is the ratio of interface stiffness to Young’s modulus. 1Nθ , 2Nθ , 3Nθ , 1Nβ , 

2Nβ , 3Nβ  are functions of the two sets of fundamental orthogonal pure modes. Detailed 
expressions for them are given in Ref. [12]. A mixed mode can be partitioned using this pair of pure 
modes. 
 
4. Numerical and experimental assessments 
 
The partition theories presented above have been extensively validated by using FEM simulations 
and in general excellent agreement has been observed [8–13]. Here, one example is presented for an 
isotropic DCB with non-rigid interface. The geometric dimensions of the DCB are length 

mm110=L , width mm1=b , total thickness mm221 =+ hh  and crack length mm10=a . The 
material Young’s modulus is GPa1=E . The loading conditions are Nm11 =BM  and 02 =BM . 
Mixed-mode partitions from the present 2D elasticity theory and Abaqus FEM are recorded in 
Table 1 for various thickness ratios γ  and interface stiffness to Young’s modulus ratios erk . An 
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excellent agreement is observed between the analytical and FEM results. Note that GGI / in 
Table 1 is a percentage. 
 

Table 1. Comparison between present 2D elasticity partition theory and FEM results. 
    Analytical (×106 N/m) FEM (×106 N/m) 
γ  erk  0.1 0.5 1 5 10 0.1 0.5 1 5 10 
1 IG  3.000 3.000 3.000 3.000 3.000 3.029 3.029 3.028 3.024 3.022
 GGI /  57.14 57.14 57.14 57.14 57.14 57.66 57.60 57.79 58.59 59.22
3 IG  45.30 43.75 42.99 42.18 40.17 45.12 44.09 43.48 41.47 40.29
 GGI /  95.87 92.59 90.98 89.26 85.01 94.72 92.71 91.56 87.96 85.97
5 IG  159.7 154.9 152.0 148.6 139.7 159.0 156.4 154.7 148.6 144.7
 GGI /  99.05 96.06 94.24 92.16 86.61 97.80 96.39 95.50 92.44 90.59
7 IG  381.9 371.5 364.3 355.8 332.0 380.7 375.4 371.8 358.2 349.1
 GGI /  99.65 96.94 95.06 92.83 86.63 98.59 97.46 96.72 94.07 92.40
9 IG  748.0 728.9 714.5 697.0 647.6 746.3 736.6 729.8 703.7 686.0
 GGI /  99.83 97.29 95.36 93.03 86.43 98.92 97.95 97.30 94.92 93.39

 
One example of experimental assessments is also presented here. Since the specimens in the tests 
were manufactured without adhesive layers [4] the laminar interfaces are considered to be rigid. 
Five partition theories, i.e. Williams theory [1], Suo-Hutchinson theory [3], Wang-Harvey classical, 
shear deformable and 2D theories, are assessed in Fig. 3. Although the Suo-Hutchinson and 
Wang-Harvey 2D partition theories are considered to be most accurate, the Wang-Harvey classical 
theory agrees the best with experimental data. It is suggested that the propagation of mixed-mode 
delamination on rigid interfaces is governed by the global partition as the global partitions of shear 
deformable and 2D partition theories are the same as the classical partitions. 
 

 
Figure 3. A comparison of various partition theories and the linear failure locus for 

epoxy-matrix/carbon-fiber composite specimens. 
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5. Conclusions 
 
The present work discovers the most fundamental fracture modes – the two sets of orthogonal pure 
modes. A mixed-fracture mode can be superimposed or partitioned by these most fundamental pure 
modes. The two sets co-exist in classical laminated composite beams and plates and coincide in 
shear deformable beams and plates for rigid interfaces. When non-rigid interfaces considered the 
two sets coincide in both classical and shear deformable theories. By using these two sets of pure 
modes, a mixed-mode can also be partitioned based on 2D elasticity theory. The novel methodology 
is rooted in the mechanics of material and operated by a powerful mathematical method. It is 
capable of studying delamination in curved laminated composite beams and shells as well. It is also 
capable of studying general and buckling driven delamination consisting of all opening, shearing 
and tearing modes. 
 

References 
[1] J.G. Williams, On the calculation of energy release rates for cracked laminates. Int J Fract Mech, 

36 (1988) 101–119. 
[2] R.A. Schapery, B.D. Davidson, Prediction of energy release rate for mixed-mode delamination 

using classical plate theory. Appl Mech Rev, 43 (1990) S281–S287. 
[3] J.W. Hutchinson, Z. Suo, Mixed mode cracking in layered materials. Adv Appl Mech, 29 (1992) 

63–191. 
[4] M. Charalambides, A.J. Kinloch, Y. Wang, J.G. Williams, On the analysis of mixed-mode 

failure. Int J Fracture, 54 (1992) 269–291. 
[5] Z. Zou, S.R. Reid, P.D. Soden, S. Li, Mode separation of energy release rate for delamination in 

composite laminates using sublaminates. Int J Solids Struct, 38 (2001) 2597–2613. 
[6] D. Bruno, F. Greco, Mixed mode delamination in plates: a refined approach. Int J Solids Struct, 

38 (2001) 9149–9177. 
[7] Q. Luo, L. Tong, Calculation of energy release rates for cohesive and interlaminar delamination 

based on the classical beam-adhesive model. J Compos Mater, 43 (2009) 331–348. 
[8] S. Wang, C.M. Harvey, A theory of one-dimensional fracture. Compos Struct, 94 (2012) 

758–767. Also a plenary lecture at the 16th international conference on composite structures 
(ICCS-16), 28–30th June 2011, Porto, Portugal. 

[9] C.M. Harvey, S. Wang, Experimental assessment of mixed-mode partition theories. Compos 
Struct, 94 (2012) 2057–2067. 

[10] S. Wang, C.M. Harvey, Mixed mode partition theories for one dimensional fracture. Eng Fract 
Mech, 79 (2012) 329–352. Also a plenary lecture at the 8th international conference on fracture 
and strength of solids (FEOFS 2010), 7-9th June 2010, Kuala Lumpur, Malaysia. 

[11] C.M. Harvey, S. Wang, Mixed-mode partition theories for one-dimensional delamination in 
laminated composite beams. Eng Fract Mech, 96 (2012) 737–759.  

[12] S. Wang, C.M. Harvey, Partition of mixed modes in double cantilever beams with non-rigid 
elastic interfaces. Eng Fract Mech (under review). 

[13] C.M. Harvey, Mixed-Mode Partition Theories for One-Dimensional Fracture. PhD Thesis. 
March 2012, Loughborough University, UK. 


