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Abstract  To consider uncertainties due to the scattering of input parameters common residual lifetime 
calculations are deduced from conservative deterministic crack propagation simulations. Conclusions about 
the reliability of the residual lifetime are not possible in general. Those can be obtained from stochastic crack 
propagation simulations. Therefore the significant input parameters have to be identified and statistically 
modelled. In the present investigations quantil curves of the crack propagation data of 42CrMo4 are derived. 
From those the fracture mechanical material parameters were statistically modelled. After identifying the 
significant material parameters by performing a sensitivity analysis stochastic input vectors of the relevant 
input parameters are generated. Using the Monte Carlo simulation and the analytical crack propagation 
software NASGRO stochastic residual lifetime calculations are performed and statistically analyzed. 
Afterwards residual lifetimes can be related to survival probabilities. 
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1. Introduction 
 
The residual lifetime of components and structures can be calculated by crack propagation 
simulations [1]. Those are mostly performed analytically due to the low computational effort. 
Therefore, deterministic simulations are commonly used. Uncertainties through the scattering of 
input parameters e.g. the crack propagation curves are considered by conservative appreciated 
material parameters and safety factors [2]. As a result of this approach, it is not possible to derive 
conclusions about the failure probability of the calculated residual lifetimes. Alternatively stochastic 
crack propagation simulations e.g. the Monte Carlo simulation [3–5] can be performed instead of 
deterministic ones. Therefore, the significant stochastic input parameters must be statistically 
characterized. From those, independent input vectors are calculated and a multiplicity of crack 
propagation simulations are performed. Afterwards the residual lifetimes are statistically analyzed. 

To identify the significant stochastic input parameters a sensitivity analysis [6–8] was used in the 
present study. Therefore, only scattering of the crack propagation curve was considered. From crack 
propagation curves of 42CrMo4 for different stress ratios quantile curves were deduced. By fitting 
those curves with the Forman/Mettu-equation [9] its parameters and the related distribution 
functions of the parameters could be obtained. Hereby, stochastic input vectors were calculated and 
crack propagation simulations performed by use of the analytical crack propagation software 
NASGRO 6 [9]. The sensitivity analysis respectively the robustness analysis provided the 
significant input parameters of the resistance against cyclic crack propagation. Those were used to 
perform stochastic crack propagation simulations.  
 
2. Theoretical background 
 
In this chapter some basics of analytical crack propagation simulation, sensitivity analysis and 
Monte Carlo simulation are provided. 
 
2.1. Analytical crack propagation simulation 
 
The basic requirements for an analytical crack propagation simulation are the solution of the stress 
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intensity factor (SIF) and a relationship between the cyclic SIF ΔK and the crack propagation da/dN 
[1]. An equation to describe the crack propagation curve is the Forman/Mettu-equation 

݀ܽ
݀ܰ

ൌ ܥ ∙ ൬
1 െ ߛ
1 െ ܴ

∙ ൰ܭ∆
௡

∙ ൬1 െ
୲୦ܭ∆
ܭ∆

൰
௣

∙ ൬1 െ
୫ୟ୶ܭ
େܭ

൰
ି௤

. (1)

This function, which is implemented in NASGRO [9], characterizes the whole crack propagation 
curve. The empirical coefficients C, n, p and q have to be fitted to test data. KC is the fracture 
toughness. The R-dependence in eq. (1) is explained by the crack closure effect and considered by 
Newman’s crack closure function 
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The constraint factor αCF varies between 1 for the plane-stress condition and 3 for the plane-strain 
condition. The constraint factor and the ratio of maximum stress σmax and yield stress σF are also 
considered as fitting coefficients [9]. To describe the R-dependence of the cyclic threshold value 
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for R ≥ 0 and 
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for R < 0 again Newman’s crack closure function is used. The cyclic threshold value ΔK1 for R → 1 
as well as ܥ௧௛

ା  and ܥ௧௛
ି  are fitting coefficients. All in all ten parameters are needed to describe the 

resistance against cyclic crack propagation by the Forman/Mettu-equation.  
 
2.2. Sensitivity analysis 
 
With a sensitivity analysis the significance of input parameters Xi or rather factors and their effects 
on an output value Y is investigated [6]. The importance of a factor is denoted as sensitivity Si. The 
effect is distinguished in main effect (first order effect) and interaction effect, which describes the 
effect of a factor according to the properties of another factor. Sensitivity analysis can be divided in 
factor screening, local and global sensitivity analysis [8]. While with factor screening only 
qualitative influences of factors are investigated with local and global sensitivity analysis also 
quantitative influences are analyzed. If the effect of a factor on an output value is investigated in a 
small domain of the factor with consideration of its distribution function a local sensitivity analysis 
or rather a robustness analysis is performed [8]. To determine sensitivities different methods e.g. the 
contrast method, the regression analysis or the analysis of variance (ANOVA) exists [7, 8]. 
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The regression analysis is based on a regression model in which the dependencies between input 
and output factors are described analytically [8]. Therefore, linear or quadratic models are used 
commonly. For nf input factors without error term a linear regression model 
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contains one constant b0, nf regression coefficients bi and nf·(nf – 1)/2 independent regression 
coefficients bij. If the domain of the input factors is normalized on [-1 , 1], the coefficients bi are a 
measure of the main effects and the coefficients bij are a measure of the interaction effects [8]. Here 
the scattering of the input and output factors is not considered Saltelli et al. [7] recommend 
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as a measure of the sensitivity. Herein, si and sy are the standard deviations of the input factor Xi and 
the output value Y.  

To check the predictive of the regression model and thus the accuracy of the calculated sensitivities 
the coefficient of determination 
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is calculated. For a linear regression model a small coefficient of determination can be caused by 
non-linear effects. In such a case a transformation of the output value can lead to a better 
accordance. To find a valid transformation the Box-Cox-transformation [8] 
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with the geometric mean value 
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can be performed. For different values of λ a multiplicity of transformations is realized. For each of 
them the coefficients of determination can be calculated to find the optimum transformation. 
 
2.3. Monte Carlo simulation 
 
The Monte Carlo simulation is a numerical method for the approximate solution of mathematic 
tasks by use of random input vectors [3]. It is e.g. used to solve multi-dimensional integrals. The 
generation of linear independent random vectors xij based on the input factor’s distribution functions 
gi(x) is the main object of the Monte Carlo simulation. If f(x) is a function of the factor X and g(x) 
its’ distribution function the expected value 
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of f(x) can approximately calculated by the mean of the function values of the N random input 
values xj [3]. The sum converges against the integral, if the standard error ݏிത of the expected value 
of f(x) gets small. Therefore, a high number N of samples is required, depending on the variance σ2 
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of the function f(x). However, the accuracy of the Monte Carlo simulation is independent of the 
number nf of input factors [3, 5] so it becomes attractive for systems with a multiplicity of factors. 

For the basic Monte Carlo simulation the input vectors are generated by a random number generator 
based on the factor’s distribution functions. Therefore, taking into account a statistical error of 10 % 
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samples are required [5]. It is obvious that the computational effort is high for small probability of 
failure PA. Against this background different variants of the Monte Carlo simulation were 
developed to minimize the variance and therefore to increase the computational efficiency. Some of 
them are the Latin Hypercube sampling and the Importance sampling [5]. 
 
3. Analysis of crack propagation data 
 
For the crack propagation simulation an analytical relationship da/dN = f(ΔK, R) is required. To 
obtain its coefficients this function is fitted through experimental crack propagation data. Therefore, 
visual criteria and a conservative approximation are commonly used [2]. An automated adaption of 
the Forman/Mettu-equation is not documented. This is also the case for a complete statistical 
analysis of its coefficients and building on a sensitivity analysis or rather a robustness analysis 
referred to the residual life. To consider the scattering of crack propagation data of metallic 
materials usually the coefficients C [2,10 – 14], ΔK0 [2, 10, 11, 13] and KC [2, 11] are statistically 
analyzed. ΔK0 is the cyclic threshold value for R → 0 which is related to ΔK1 [9]. 
 
3.1. Automated adaption of fitting parameters 
 
To perform an automated analysis of crack propagation data by the Forman/Mettu-equation a 
MATLAB program was developed. The adaption of the fitting coefficients on the experimental data 
is divided in two steps. First the threshold values against cyclic crack propagation are calculated for 
different stress ratios and therewith the coefficients ΔK1, ܥ௧௛

ା  and ܥ௧௛
ି  of equations (4) and (5) are 

determined. Next the coefficients C, n, p and q of the Forman/Mettu-equation (1) are calculated. 
The remaining coefficients a, a0, αCF, σmax/σF and KC have to be supported for the adaption. 

After loading the crack propagation data the threshold values for the different stress ratios are 
calculated by use of the DLR-method [15]. Therefore the user has to set an upper bound da/dNmax of 
the crack propagation data used for the analysis of the threshold value. This limit should be below 
the transition from the threshold to the Paris-domain [15]. The threshold data are analyzed in a 
linear scaled coordinate system, Figure 1. Every data set with R = constant is fitted by a linear 
function. Therewith, the threshold value is obtained for da/dN = 0. The crack propagation data of 
42CrMo4 contains of the stress ratios R = 0,1, R = 0,3 and R = 0,5. The analyzed threshold values 
for each stress ratio are plotted in Figure 2. 

Referring to the determination of the experimental threshold values the coefficients ΔK1, ܥ௧௛
ା  and 

௧௛ܥ
ି  for the analytical threshold value calculation are adapted. Therefore two algorithms are 

available in the program. The first one is a simple search algorithm, in which the search domain is 
divided into intervals. The second one is a gradient based algorithm. For both methods start values 
of the fitting coefficients must be set. Furthermore, the coefficients a = 45 mm, a0 = 0,0381 mm, 
αCF = 1,9 and σmax/σF = 0,3 are pretended. At the beginning the number of stress ratios is checked. If 
only positive stress ratios are available at least two otherwise three discrete threshold values are 
required. Since the crack propagation data only contains positive stress ratios ܥ௧௛

ି  could not be 
analyzed, see equation (4) and (5). The adaption of the threshold value is visualized in Figure 2. 
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Figure 1: Determination of threshold values from crack propagation data by DLR-method 

 
In the second step of the adaption the coefficients C, n, p and q are calculated by use of a search 
algorithm with nested intervals. Therefore, the four-dimensional search domain is divided into 
intervals. In every iteration loop a weighted effective error is calculated for every parameter 
combination. The parameter combination leading to a minimum error is used as center for the 
search domain of the next iteration loop. Additionally, the search domain is reduced, so that the 
intervals become smaller. Due to the nested intervals a convergence behavior of the algorithm is 
realized. Since error values of the threshold domain are much smaller compared to those of e.g. the 
KC-domain the error values are weighted with the inverse of the crack propagation. For the adaption 
a fracture toughness KC = 4.200 N/mm3/2 is used. The results of the adaption together with the crack 
propagation data of 42CrMo4 are shown in Figure 3. The appropriated mean fitting coefficients are 
listed in Table 1 and consists with a probability of survival P = 50 %. 

 
Figure 2: Experimental and analytical threshold values 
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Figure 3: Crack propagation data of 42CrMo4 and the adaption by the Forman/Mettu-equation 

 
3.2. Statistical analysis 
 
The statistical analysis of the crack propagation data is divided in three steps. First for each stress 
ratio quantile curves are calculated for different probabilities of survival. Next, for each probability 
of survival the quantile curves are fitted by the Forman/Mettu-equation to obtain the fitting 
coefficients. Those are statistically analyzed in the last step to obtain their distribution functions.  

To determine quantile curves the logarithm is taken from the crack propagation data. Afterwards the 
co-domain of the crack propagation data is divided into intervals. For each interval a polynomial 
regression function and a confidence interval for a pretended confidence probability are calculated. 
Therewith and for each domain discrete values are calculated for the mean and the upper and lower 
bound of the confidence interval. By use of interpolation functions the transition between the 
domains is smoothed and equidistant spaced values are calculated. Taking the antilogarithm the 
three quantile curves are obtained e.g. for a stress ratio R = 0,1, Figure 4. This procedure is also 
applied to the crack propagation data of the other stress ratios. 

Every quantile curve corresponds to a probability of survival P. Taking the quantile curves for one 
probability of survival the fitting coefficients of the threshold value and the Forman/Mettu-equation 
are determined by use of the adaption program. For the statistical analysis of the crack propagation 
data of 42CrMo4 the probabilities of survival P = 5 %, P = 50 % and P = 95 % are used. The 
corresponding fitting coefficients are listed in Table 1. As can be seen the analytical crack 
propagation curve is shifted to top left with increasing probability of survival. 

In the last step every fitting coefficient is statistically analyzed. This contains the choice of a 
distribution function and the calculation of the mean value and the standard deviation. For all fitting 
coefficients a normal distribution is used to describe the scattering, except of the coefficient C, 
Table 1. Here, a logarithmic normal distribution leads to the best results. 
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Table 1: Fitting coefficients of the Forman/Mettu-equation and their distribution functions 

Parameter 
ΔK1 

[N/mm3/2] 
௧௛ܥ
ା  

C 
[mm/LW] 

n p q 
KC 

[N/mm3/2]

P = 5 % 71,0 3,1 8,6·10-12 2,5 0,65 1,1 4350 

P = 50 % 55,75 3,4 1,2·10-11 2,4 0,8 0,9 4200 

P = 95 % 42,0 3,83 1,8·10-11 2,3 1,0 0,7 4050 

Distribution normal normal log-normal normal normal normal normal 

μ 56,3 3,44 -10,91 2,4 0,82 0,9 4200 

s 8,81 0,22 0,0975 0,06 0,11 0,12 91,2 

 

 
Figure 4: Crack propagation data of R = 0,1 and the adaption by quantile curves 

 
4. Stochastic crack propagation simulation 
 
To perform a sensitivity analysis of the fitting coefficients and to deduce statistical secured residual 
lifetimes stochastic crack propagation simulations were carried out by use of the analytical crack 
propagation software NASGRO 6.0 [9]. In a MATLAB script random input vectors of the fitting 
coefficients were generated using the determined distribution functions and a random number 
generator. To assure a probability of failure PA = 1 % the input vectors contain of 10.000 elements, 
according to equation (12). For every element the MATLAB script generates an input file, starts the 
crack propagation simulation and reads in the residual lifetime. 

The crack problem is a semi-elliptical surface crack in a hollow cylinder. The cylinder is loaded by 
a positive constant mean stress and a reverse bending stress. The amplitude of the bending stress is 
defined by a load frequency distribution. The initial crack size and the load were adapted, that the 
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frequency distribution is at least repeated 30 times to prevent load sequence effects [16]. The 
non-interaction material model was used. 
 
4.1. Sensitivity analysis of the fitting coefficients on the residual lifetime 
 
To identify the dependencies of the residual lifetime a sensitivity analysis was performed by use of 
the software Visual-XSel 12.0 [17]. The input factors are the seven fitting coefficients C, n, p, q, 
ΔK1, ܥ௧௛

ା  and KC. The output factor is the residual lifetime. To derive the sensitivities a regression 
analysis was performed by use of a quadratic model with interaction effects [17]. To increase the 
accuracy of the regression model the output factor was transformed by the natural logarithm, which 
followed from the Box-Cox-transformation. The reduced model, containing only the significant 
factors, explains 99,8 % of the data. The relative effects of the input factors are plotted in Figure 5. 
As can be seen the coefficients C, n and q are inversely proportional to the residual lifetime. 

 
Figure 5: Relative effects of the fitting coefficients on the residual lifetime 

 
Furthermore, it is obvious that the coefficients q and KC are less significant and thus are not 
required as stochastic parameters in the stochastic crack propagation simulation. The coefficients C, 
n, ΔK1, ܥ௧௛

ା  and p are significant. That means they have to be statistically analyzed and are required 
for the stochastic crack propagation simulation. Although, p has a small effect it cannot be 
neglected, due to the interaction effects between ΔK1 and ܥ௧௛

ା . 

The results of the sensitivity analysis are inconsistent to the statistical analysis of crack propagation 
data in literature [2, 10 – 14]. On the one hand it is not necessary to statistically analyze KC in terms 
of a residual lifetime calculation. On the other hand a statistical analysis should include the 
coefficients n, p and ܥ௧௛

ା . 
 
4.2. Determination of statistical secured residual lifetime 
 
The stochastic crack propagation simulations with stochastic input vectors, created by a random 
number generator correspond to a basic Monte Carlo simulation. Additionally and based on the 
results of the sensitivity analysis a second stochastic crack propagation simulation was performed in 
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which only the five significant parameters were stochastically modeled. Afterwards, the residual 
lifetimes were statistically analyzed by use of the distribution fitting toolbox in MATLAB. The 
scattering of the residual lifetimes corresponds to a logarithmic normal distribution, Figure 6. By 
knowledge of the distribution function residual lifetimes can be calculated for arbitrary probabilities 
of failure. Furthermore it is able to determine the range of scattering 

ேܶ ൌ 1: ௉ܰୀଽ଴%

௉ܰୀଵ଴%
ൌ 1:

3,0 ∙ 10଺

0,83 ∙ 10ହ
ൌ 1: 3,6 (13)

which is equal for both stochastic simulations. So the results of the sensitivity analysis are 
confirmed and the coefficients q and KC are insignificant. 

 
Figure 6: Residual lifetimes of stochastic crack propagation simulation with 7 stochastic parameters 

 
5. Conclusion 
 
In the current investigations crack propagation data of 42CrMo4 are analyzed. This includes the 
determination of fitting coefficients of the Forman/Mettu-equation which describes the crack 
propagation curve analytically. For the automated adaption of the crack propagation curve a 
MATLAB program was developed. Herewith, first the experimental threshold values are calculated 
and analytically described by use of a one criteria concept. Next the whole crack propagation curve 
is adapted by the Forman/Mettu-equation. Therefore, the limits of cyclic crack propagation 
(threshold value and fracture toughness) are required. For the determination of the optimum fitting 
coefficients a search algorithm with nested intervals is used. Problematically in this context is the 
calculation of an error value by reason that the co-domain reaches about eight decades. 

Furthermore, the crack propagation data is statistically analyzed. By dividing the co-domain in 
several intervals regression functions and confidence intervals are calculated for each domain. 
Therewith, discrete quantile curves for pretended probabilities of survival are calculated using 
interpolation functions. From the adaption of quantile curves with constant probability of survival 
by the Forman/Mettu-equation the corresponding fitting coefficients are determined. The statistical 
analysis of these fitting coefficients leads to its distribution functions. 

To obtain statistically secured residual lifetimes stochastic crack propagation simulations are 

0,83·106 3,0·106 
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performed by use of MATLAB and the analytical crack propagation software NASGRO. Therefore, 
the significant parameters are stochastically modeled. To identify the significant parameters of the 
Forman/Mettu-equation a sensitivity analysis was performed. The results are inconsistence to the 
statistical analysis of crack propagation data used in literature. For instance the fracture toughness is 
insignificant to the scattering of the residual lifetime and can be neglected in the stochastic crack 
propagation simulation. As simulation method the basic Monte Carlo simulation was used. The 
stochastic input vectors are determined by a random number generator. After the simulation the 
residual lifetimes are statistically analyzed. Thus, it is possible to obtain residual lifetimes for 
pretended probabilities of survival. 
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