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Abstract: Cohesive zone models (CZM) are widely used for material fracture analysis. In monotonic loading 
process, the cohesive parameters are remarkably dependent on the specimens’ triaxiality conditions. A cyclic 
CZM is now introduced for crack initiation life and fatigue crack growth analysis. These two types of fatigue 
phenomena - crack initiation and fatigue crack growth - are to be described by the cyclic CZM with a unique 
set of parameters. Fatigue crack initiation is usually investigated using smooth specimen and fatigue crack 
growth is measured using compact tension specimen. The triaxiality condition in the CZM of these two 
standard specimens is strongly different. Realistic modelling of the phenomena therefore requires taking the 
triaxiality into account in the damage evolution law of the cyclic CZM. As a consequence in this paper a 
cyclic CZM combined with triaxiality dependent characteristic is proposed. This new model can be applied 
for specimens with different triaxiality conditions. The computation results including crack initiation life and 
fatigue crack growth simulation are compared with experimental data. In the very low cycle fatigue regime, a 
reasonable accordance of experimental and calculated results is achieved. 
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1. Introduction 
 
In actual engineering, fracture of the materials and structures is a very dangerous failure form and 
usually causes serious consequence. Thus, research on mechanisms of material fracture, controlling 
and reducing occurrence of fracture accidents are always important issues. Fracture mechanics 
provides the theoretical basis and application approaches for material fracture research. But 
sometimes the modelling expenses are very high for fracture mechanics concepts and other ideas 
should be introduced. Among all these methods, the cohesive zone model is very attractive for 
researchers. 
 
Cohesive zone model (CZM) is an interface damage model, it simplifies the fracture process zone 
into a narrow cohesive strip. Originally, the concept of CZM has been proposed by Dugdale [1] and 
Barenblatt [2]. In 1976, the CZM was firstly used by Hillerborg [3] in finite element calculation for 
concrete material. From then on, the CZM was applied widely as a numerical simulation model for 
material fracture. In the last 30 years, the CZM was developed by many investigators and scientific 
groups [4-10]. Now, it becomes a universal tool for material fracture analysis. Especially for 
material fracture under monotonic loading, the applications of the CZM are successful.  
 
However, using the CZM in material fatigue fracture is still at a starting stage. In the late 1990’s, 
the CZM was firstly extended by De-Andrés et al. [11] for fatigue crack growth simulation. A 
damage parameter was introduced to indicate the irreversible damage process. But in this model no 
description about the damage evolution is supplied. Soon afterwards, Yang et al. [12] developed a 
damage locus in the CZM to simulate fatigue crack growth. However, in this model the unloading 
and reloading stiffness have different definitions and the damage evolution is just dependent on the 
damage locus, these treatments are not convenient and accurate for application. Then the cyclic 
CZM proposed by Roe and Siegmund [13] explicitly introduced a damage variable and a damage 
evolution equation. The stiffness and traction of the cohesive zone degraded with the damage 
variable. The numerical calculation results of this model can reproduce many basic characteristics 
which are similar to the experimental phenomena in fatigue fracture. Nevertheless, there is no 
experimental verification for the damage evolution process and the other important factors for CZM 
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are not considered, such as surrounding continuum element influence, element friction influence 
and constraint condition influence. Base on Roe and Siegmund’s method, some authors did further 
research work [14-16]. 
 
2. Cohesive zone model 
 
2.1. Fundamentals 
 
The CZM intends to describe the real physical fracture process by phenomenological equations. It 
treats the material separation in the fracture process zone as material damage. Separation is the 
displacement jump occurring in the cohesive element. In the CZM, the material separation 
behaviour is described within a constitutive equation relating the cohesive traction T to the material 
separation δ, called traction separation law (TSL). The TSL represents the material deterioration 
occurring in the damage zone under the monotonic loading condition. For the shape of the TSL 
many proposals have been given, but no one can easily decide which is right or wrong. For all TSLs, 
two parameters are contained: maximum traction T0 and critical separation δ0. The area under the 
TSL represents the cohesive energy Γ0. If the shape of the TSL is selected, the cohesive parameters 
should be determined from the correlative experiment. In this paper, the TSL from Scheider et al. is 
taken as a basis (Equation (1) and Figure 1). More details on application of this CZM can be taken 
from references [8-9]. 
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Figure 1. Traction separation law according to Scheider et al. [8], given by Equation (1) 

 
2.2. Triaxiality dependent behaviour 
 
When the phenomenological TSL is applied for ductile fracture analysis, it is possible to find a 
fundamental relationship between this TSL and micromechanics. A micromechanical model - GTN 
model [17] is used to simulate a biaxial tension test for one volume element, a cohesion-decohesion 
curve can be obtained. Such cohesion-decohesion curve is considered as the micromechanical TSL 
and can be used to fit the phenomenological TSL. For this micromechanical traction separation 
curve, some investigators found that it was strongly dependent on the triaxiality condition of the 
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element. Here, the triaxiality value means the ratio between the hydrostatic stress and the von Mises 
equivalent stress, see Equation (2). 

 σ
σ

= h

Mises

H  (2) 

 
H is the triaxiality value for unit volume element. σh is the hydrostatic stress in the element. σMises is 
the von Mises equivalent stress in the element. 
 
The conclusions for triaxiality dependent behavior can be summarized as: the cohesive parameters 
are not pure material constants but dependent on the triaxiality conditions. With increasing the 
triaxiality value, the material maximum traction T0 becomes bigger but the material critical 
separation δ0 and cohesive energy Γ0 become smaller. Details about this investigation can be 
consulted in references [18-20]. When the triaxiality dependent behaviour is implemented into the 
CZM, the triaxiality value can only be obtained from the surrounding continuum element and has to 
be transferred to the cohesive element. 
 
3. Extended CZM for fatigue fracture 
 
3.1. Overview 
 
The ordinary TSLs just describe the material fracture failure under monotonic loading condition. 
For material fatigue fracture properties, other approaches need to be introduced. By reviewing some 
ideas from pioneers, a tentative method of Roe and Siegmund [13] is chosen as starting point. 
Considering the theory of continuum damage mechanics, a damage variable and a corresponding 
damage evolution law are introduced in the CZM following ideas of Scheider [8]. This cyclic CZM 
is used for fatigue fracture analysis. 
 
In respect to the fatigue fracture process, the important research topics focus on fatigue crack 
initiation life and fatigue crack growth rates analysis. In experimental investigation, fatigue crack 
initiation is usually tested using uncracked smooth specimen and fatigue crack growth is measured 
using pre-cracked specimen. The triaxiality conditions for these two standard specimens are totally 
different. When the CZM is applied for simulation of these two fatigue phenomena, it is necessary 
to take the triaxiality influence into account in the damage process. 
 
So, a triaxiality dependent cyclic CZM is now proposed. The model should be implemented to 
reproduce fatigue experimental phenomena which contain fatigue crack initiation and fatigue crack 
growth, just using a unique set of parameters. For simplicity, in this paper just mode-I fracture is 
considered. This means in the CZM just normal separation contributes to the damage. 
 
3.2. Fatigue damage process 
 
With the damage variable D, the cohesive strength and normal stiffness of the cohesive element will 
degrade (Equation (3) and Equation (4)). 
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0
NT  and 0

%NT  are the initial and current normal cohesive strength, the subscript (H) represents that the 

initial cohesive strength is dependent on the triaxiality condition. Nk  and %
Nk  are the initial and 

current normal stiffness of the cohesive element. 1δ  is a parameter relating to the critical separation 
δ0, the meaning is the same as in Equation (1). 
 
For the triaxiality dependent cyclic CZM, it is difficult to judge the loading and unloading 
conditions because the separation δ and the critical separation δ0 of the cohesive element alter 
simultaneously. So, a relative normal separation and its increment are defined by Equation (5) and 
Equation (6): 
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δ N

re  and δ N  are the relative and absolute normal separation, respectively. 0δ
N  is the critical normal 

separation, the subscript (H) represents that it is dependent on the triaxiality condition. δΔ N
re  is the 

relative normal separation increment. The subscripts t-Δt and t stand for the previous and current 
calculation time increment. δ −Δ

N
t t  and δ N

t , ( )0δ −Δt t

N
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N
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N
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absolute normal separation, the critical normal separation and the relative normal separation in the 
time increment t-Δt and t, respectively. If in the different time increment the triaxiality condition 
does not change, the two critical separations ( )0δ −Δt t

N
H  and ( )0δ t

N
H  should be the same. 

 
A loading step is indicated by δΔ N

re >0, an unloading step is indicated by δΔ N
re <0. At the first 

loading step, the traction separation response goes along the monotonic TSL’s path (Equation (1)). 
Afterwards the unloading and reloading process is defined by Equation (7). 
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tT  are the normal traction in the time increment t-Δt and t. The meanings for the other 

symbols can be checked in the previous paragraphs. 
 
In every loading process a maximum relative normal separation maxδ N

re  may be reached. During the 
reloading process, when the current relative normal separation exceeds this maximum value, 
Equation (8) is used for the new path. 
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In the unloading process, it is still an open topic how the triaxiality influences the cohesive 
parameters. In this paper, a simple assumption is made. The triaxiality value keeps constant in the 
unloading process and a part of the reloading process. The definition about this part of the reloading 
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process is like Equation (8). When the current relative normal separation is less than δ N
re , the 

triaxiality value keeps constant. Once δ N
re  is exceeded, the triaxiality value updates again. 

 
After the cohesive element is broken, in the unloading or compression period in order to avoid the 
adjacent continuum element penetrating each other, a contact condition should be considered. Here, 
when δ N <0, Equation (9) is used. 
 δ=N N

NT k  (9) 
 
A new damage evolution equation is proposed here, as Equation (10) 
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D  is the damage variable. &D  is the damage evolution. It is always a positive value. ( )0

N
HT  is the 

triaxiality dependent normal cohesive strength. NT  is the cohesive traction. δΔ N
re  is the relative 

normal separation increment. σ e  is the material endurance limit. H is the triaxiality value. A and m 
are the material dependent damage controlling parameters. λ  is the material dependent triaxiality 
influence coefficient. 
 
A schematic illustration for the cyclic process of the CZM is shown in Figure 2. The new cyclic 
CZM is contained in a user defined subroutine, and it is connected with the commercial finite 
element program ABAQUS. The fatigue damage is calculated for every time increment. 
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Figure 2. Schematic illustration for cyclic process of the CZM 

 
4. Numerical application 
 
The triaxiality dependent cyclic CZM is applied for fatigue simulation. For triaxiality dependent 
behavior, some results from literature [20] are used. In reference [20], the examined material is 
S460N. For convenience, material S460N is chosen for the whole investigations in this paper, too. 
Some basic mechanical properties for material S460N are shown in Table 1.  
 

Table 1. Mechanical properties for material S460N 
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Material E(MPa) σY(MPa) Rm(MPa) K' n' σe(MPa) 
S460N 208000 470 682 1181 0.161 312 

 
E is the material Young’s modulus. σY is the material yield stress. Rm is the material ultimate tensile 
strength. K' is the material cyclic hardening coefficient. n' is the material cyclic hardening exponent. 
σe is the material endurance limit. 
 
4.1. Damage parameters analysis 
 
For the chosen material, the unknown damage parameters in the damage evolution law are just A, m 
and λ. The material dependent triaxiality influence coefficient λ is fixed first for λ=1.2. The decision 
for this parameter is based on many trial calculations and a little supposition. The recommendation 
λ value for material S460N ranges between 0.8 and 1.2, a change of the parameter λ will influence 
the other two parameters A and m. After λ is chosen, a simple simulation is applied to analyze the 
material dependent damage controlling parameters A and m. The finite element model consists of 
two plane strain elements (CPE4) connected by one cohesive element. The model is loaded by 
cyclic displacement, the loading ratio is R=-1.  
 
In order to reflect the real material response under cyclic loading, the material behavior for 
continuum element uses a nonlinear kinematic hardening model in ABAQUS. Three different ways 
are offered by ABAQUS to define the nonlinear kinematic hardening component, specifying the 
material parameters directly, specifying half-cycle test data or specifying test data from a stabilized 
cycle. In this paper, nonlinear kinematic hardening model is identified from the stabilized cyclic test. 
Series of the parameters A and m are investigated and the calculation results are plotted in the 
material strain-life curve, shown in Figure 3. 
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Figure 3. Effect of damage controlling parameters A and m 

 
It is obvious that the parameter m influences the slope of the strain life curve. With increasing the 
value of m, the slope of the strain-life curve becomes flatter. The parameter A does not influence the 
slope of the strain-life curve. However, it makes the curve moving parallelly. According to these 
rules, the parameters A and m can be identified by fitting the numerical results to the experimental 
strain-life curve.  
 
4.2.  Fatigue crack initiation simulation 
 
The strain-life curve of the material S460N is expressed by Equation (11) 
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εa  is the strain amplitude. ,ε a el  and ,ε a pl  are the elastic and plastic part for the strain amplitude. E is 
the Young’s modulus. N is the fatigue life, it stands for fatigue crack initiation life or fatigue 
fracture life. Here it means the fatigue crack initiation life. σ ′f  is the fatigue strength coefficient. b 
is the fatigue strength exponent. ε ′f  is the fatigue ductility coefficient. c is the fatigue ductility 
exponent. Values are taken from reference [21] and shown in Table 2. 
 

Table 2. Experimental strain-life curve parameters 
Material E(MPa) σf'(MPa) εf' b c 
S460N 208000 1218 0.452 -0.104 -0.536 

 
In the previous section, the influence rules of the damage controlling parameters A and m are 
discussed. By fitting the simulation results to the experimental strain-life curve, the parameters A 
and m can be determined. Here the simulation model is also two plane strain elements connected by 
one cohesive element. The loading condition and the material behaviour are like in the previous 
section. The investigations just focus on the very low cycle fatigue regime, so the calculated 
number of cycles is within 600. For material S460N, the parameters A and m are fitted as: A=25, 
m=3.7. The experiment and simulation results are plotted in Figure 4. 
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Figure 4. Comparison of strain-life curve for material S460N 

 
4.3. Fatigue crack propagation simulation 
 
For the material S460N, the damage parameters are determined: λ=1.2, A=25 and m=3.7. These 
parameters need further validation. As an important part of fatigue fracture, the fatigue crack 
growth simulation is applied here to validate the damage parameters. 
 
The experimental data of fatigue crack growth for the material S460N are taken from reference [22]. 
The experimental fatigue crack growth rate curve includes four different strain range levels, i.e. 
Δε=0.4%, Δε=0.6%, Δε=1.0% and Δε=2.0%. Because the investigations focus on very low cycle 
fatigue regime, just the experimental data at fast crack growth rate are used for comparison. 
 
The numerical model is a two dimensional compact tension specimen. The dimension of the model 
is width 50mm and height 60mm. The initial crack length a0 is 25mm and the ligament length is 
25mm, too. The type of the continuum element is plane strain. The material behaviour of the 
continuum elements is the same as in the previous section. The cohesive elements locate along the 
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ligament and the size of the element is 0.125mm. The details for the finite element model are 
depicted in Figure 5. 
 

ΔF

boundary condition
ux=0

boundary condition
ux=uy=0

crack

cohesive elements

 
Figure 5. Finite element model for simulated compact tension specimen 

 
In the calculation, three different cyclic loading ranges are used: ΔF=1200N, ΔF=950N and 
ΔF=800N. All loading ratios are R=0. The fatigue crack growth rate Δa/ΔN can be calculated 
directly from the numerical model, but the cyclic ΔJ integral will be computed by another approach. 
A finite element model of the CT specimen without cohesive zone is built. The crack length 
inserted in this model is (a0+Δa). One cycle is calculated and the cyclic ΔJ integral is computed by 
Equation (12) [23]. 
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σΔ ij  and εΔ ij  are the cyclic stress and strain range. W is the cyclic deformation energy. x and y are 

the Cartesian coordinates with the x-axis parallel to the crack surface. Γ is the integration path. ds is 
the line element lying on the integration path. Δ it  is the cyclic stress vector on the integration path. 
Δ iu  is the cyclic displacement variation. 
 
The simulation results under three loading ranges are plotted together with the scatter band of 
experimental data in Figure 6.  
 

 
Figure 6. Comparison of fatigue crack growth rates curve for material S460N 

 
A reasonable accordance of experimental and simulated results is achieved. The simulated fatigue 
crack growth rates are a little bit faster than the experimental data, but the total trend for fatigue 
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crack growth is very similar. One possible reason for this diversity is from the influence of the 
model dimension. In experiment, the specimen is a three dimensional model, but in simulation a 
two dimensional model is used. The calculation about the energy integral ΔJ is bigger for two 
dimensional problems than for three dimensional problems. The other possible reason is from the 
new CZM. This numerical model may express the real cyclic process inaccurately. 

 
5. Conclusions 
  
CZM is a very robust numerical tool for material fracture analysis. It is simple enough for 
theoretical understanding and practical application. For the material monotonic fracture, the 
implementation of the CZM is particularly mature. But for fatigue fracture analysis, the application 
is just in developing. In this paper, according to the pioneers’ idea [13], a triaxiality dependent 
cyclic CZM is proposed. This model can be applied for various triaxiality conditions, and only one 
set of unique material damage parameters is used. In the very low cycle fatigue regime, using the 
triaxiality dependent cyclic CZM in fatigue crack initiation and fatigue crack growth simulation, the 
reasonable comparison results between experiment and simulation can be obtained. 
 
However, this new CZM is still in a testing process. Many improvements and developments need to 
be done in the future. More materials should be chosen in the simulation to validate the new CZM. 
The cyclic process for the CZM needs more discussions, especially in unloading and compression 
period. The format of the damage evolution law maybe modified. The triaxiality dependent 
behavior in the whole cyclic process needs much more investigations. 
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