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Abstract  Ductile fracture of metallic materials is usually the result of void nucleation, growth and 
coalescence. The original Gurson-Tvergaard (GT) model deals with the homogenous deformation related to 
void nucleation and growth. However, it takes no consideration on the localized deformation due to the void 
coalescence. In this paper extended GT damage models incorporating two different void coalescence criteria 
are developed, respectively. One of the void coalescence criteria is based on the plastic limit load model by 
Thomason; the other decides the onset of void coalescence by a critical equivalent plastic strain as a power 
law of stress triaxiality (defined by the ratio of the hydrostatic stress over the equivalent stress). Hence, void 
coalescence is controlled by physical mechanisms, rather than by a critical void volume fraction which 
cannot be taken as a constant. The extended constitutive models are implemented into an implicit finite 
element code via a user defined material subroutine (UMAT) in ABAQUS. Detail analyses are performed for 
a series of notched round tensile bars. The predictions of the fracture behavior based on the proposed 
approach, from void nucleation to final material failure, are compared with experiment data. Both results 
agree pretty well. In the end, the effects of stress triaxiality are discussed. 
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1. Introduction 
 
Mechanism-based fracture mechanics attempts to link micro-structural variables and continuum 
properties of material to macroscopic fracture behavior. The macroscopic ductile fracture process 
due to the presence of voids can be separated into two phases, the homogenous deformation with 
void nucleation and growth, and the localized deformation due to void coalescence (Zhang et al., 
2000) [1].The famous porous material model for analyzing the ductile failure, in which the material 
yielding is coupled with damage (void volume fraction, f ) and hydrostatic stress, was proposed by 
Gurson (1977) [2]. Tvergaard (1981, 1982) [3], [4] modified Gurson model by introducing two 
adjustment factors to account for void interaction effects and material strain hardening. Needleman 
and Tvergaard (1984) [5] extended Gurson model to simulate the rapid loss of load carrying 
capacity during void coalescence. Chu and Needleman (1980) [6] supplemented it by various kinds 
of void nucleation criteria. 
 
In the early research, the criterion for the onset of void coalescence states that void coalescence 
starts at a critical void volume fraction cf which has tend to be regarded as a material constant. 
However, further studies show that cf depends strongly on parameters such as initial void volume 
fraction, void shape, void spacing, stress triaxiality, as well as strain hardening, etc.(Zhang et al., 
2000; Pardoen and Hutchinson, 2000) [1], [7]. Thomason (1985, 1998) [8], [9] proposed a plastic 
limit load model for void coalescence. In this model, the start of void coalescence is controlled by 
the mechanism of the plastic localization in the void ligament, which is able to unify the material 
and stress states dependencies. Bao (2005) [10] conducted a series of experiments and finite 
element analyses on an aluminum alloy 2024-T351 and obtained a coalescence criterion in terms of 
the critical equivalent strain cE as a function of the stress triaxiality ratio T . When the 
macroscopic equivalent strain reaches the critical value cE , void coalescence occurs and the 
material quickly loses its load carrying capacity. However, Gao and Kim (2006) [11] argued that the 
extra parameter lode angleθ should be introduced and the critical equivalent strain should have the 
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form ( ),cE T θ . 
 
In this paper, two different void coalescence criteria are combined with the original GT model to 
simulate the whole process of voids nucleation, growth and coalescence. Axisymmetric round 
tensile bars with different notch root radii are simulated using the extended damage models to 
investigate the variation of critical damage at coalescence as a function of stress triaxiality. 
 
2. Extended Damage Models 
 
2.1. Modeling the void growth process 
 
The growth of a void and the associated macroscopic softening is adequately captured by GT 
constitutive relationship. The most widely used form, which applies to strain hardening materials 
under the assumption of isotropic hardening, has the shape 

2
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where p represents the macroscopic hydrostatic pressure 
1 :
3

p Iσ= − ,                               (2) 

q denotes the macroscopic Mises equivalent stress 
3 :
2

q s s= ,                                (3) 

σ is stress tensor; s is stress deviator; I is the second order identity tensor; ( )p
mσ ε is the current 

flow stress of the fully dense matrix material as a function of p
mε , the equivalent plastic strain in the 

matrix; and f is the current void volume fraction in the material. Tvergaard (1980, 1981) [3] 
introduced the constants 1q , 2q  and 2

3 1q q= to account for void interaction effects due to 
multiple-void arrays and to give a better agreement with experimental data.  
 
The hardening of the matrix material is described through ( )p

mσ σ ε= . The evolution of p
mε is 

assumed to be governed by the equivalent plastic work expression: 
( )1 :p p

mf d dσ ε σ ε− = ,                           (4)
 

where pdε is the macroscopic plastic strain rate tensor; p
mdε  is equivalent plastic strain rate of the 

matrix material. 
 
The change in volume fraction of the voids is due partly to the growth of existing voids and partly 
to the nucleation of voids. It can be expressed as [12]: 

growth nucleationdf df df= + ,                           (5)
 

with 
( )1 :p

growthdf f d Iε= − ,                           (6) 
Nucleation of voids can occur as a result of micro-cracking and/or decohesion of the particle-matrix 
interface. It can be assumed to be strain controlled, so that the rate of increase of void volume 
fraction due to nucleation of new voids is given by 

p
nucleation mdf Adε= ,                             (7) 
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The void nucleation intensity, A is a function of p
mε  the equivalent plastic strain in the matrix 

material, and is assumed to follow a normal distribution as suggested by Chu and Needleman (1980) 
[6]: 
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where Nf is determined so that the total void volume nucleated is consistent with the volume 
fraction of particles; Nε  is the mean equivalent plastic strain for void nucleation; and Ns  is the 
standard deviation of the distribution. 
 
2.2. Void coalescence criterion 
 
2.2.1 Plastic limit load criterion 
 
Thomason (1985, 1998) [8] found that the localized deformation mode by intervoid matrix necking 
can be characterized by a plastic limit load which is not fixed but is strongly dependent on the void 
geometry and stress states. The condition for void coalescence can be written as: 

1 1
Lσ σ= ,                               (9) 

where 1
Lσ represents the capacity of the material to resist void coalescence; and 1σ is the maximum 

principal stress at current yield surface of a material point. 
 
Using a 3D unit cell containing an axisymmetric ellipsoidal void, Thomason acquired the plastic 
limit load to void coalescence with the following form 
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where xR , zR and X are the current radii of the ellipsoidal void in the x- and z- axes and the 
current length of the cell in the x-axis, respectively; the local coordinates system is constructed so 
that x-, y- and z- axes represent the minor, medium and maximum principal stress directions. 
α and β are constants which are suggested as 0.1 and 1.2 by Thomason. Pardeon and Hutchinson 
(2000) [7] conducted a large number of cells calculations and found the dependence of α andβ on 
hardening exponent n . Their simulation results showed thatβ is almost a constant and can be taken 
as 1.24 while 

( ) 20.1 0.217 4.83 (0 0.3)n n n nα = + + ≤ ≤ ,                  (11) 
If the void is assumed to be always spherical, the void/matrix geometry in Eq. 10 can be directly 
determined from the current void volume fraction f  and current principal strain 1ε , 2ε , 3ε  by 
following equations (Zhang, 2001)[13]: 

1 2 33
3
4x y z

fR R R eε ε ε

π
+ += = = ,                       (12) 

1 2 / 2X Y eε ε+= = ,                           (13) 
 
2.2.2 Equivalent plastic strain criterion 
 
By assuming the existence of a periodic distribution of voids, the material can be considered as an 
array of cubic blocks with each block being a unit cell having a void at its center. Failure of the unit 
cell occurs when localization of plastic flow takes place in the ligament (Koplik and Needleman, 
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1988) [14]. In macroscopic, a critical value of equivalent plastic strain is always used as a 
measurement of material ductility. Therefore, critical equivalent plastic strain can be used to denote 
material failure by void coalescence. To implement this concept, a possible approach is to establish 
a failure criterion based on equivalent plastic strain at the location where failure is most likely to 
initiate. 
 
In practical, for axisymmetric round tensile bars, failure always initiates in the center of the 
minimum section in specimens, where corresponds to the site with the highest stress triaxiality. In 
addition, stress triaxiality is often used as the sole parameter to characterize the effect of the triaxial 
stress states on ductile fracture. So the critical equivalent plastic strain can be established as a 
function of the stress trixiality ratioT .  
 
The power law form of the equivalent plastic strain criterion for API X65 steel proposed by Oh et al. 
(2007) [15] can be written as:  

10.029.3 54.1 += − T
ef eE ,                            (14) 

with 

q
pT −= ,                                  (15) 

where efE represents the critical equivalent plastic strain. This criterion is also used to develop 
extended damage model in this paper. 
 
2.3. Post coalescence response 
 
The *f function, introduced by Tvergaard and Needleman (1984) [5], is adopted, to account for the 
effects of rapid void coalescence at failure. After void volume fraction reaches critical value 
determined by voids coalescence criteria, f is replaced by *f in the extended damage models. 
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where cf is the critical void volume fraction at which voids begin coalesce; *
11/uf q= is the *f value 

at zero stress; and Ff denotes the void volume fraction at final complete failure. 
 
3. Finite element applications 
 
API X65 steel which is main pipe material largely utilized in gas transportation networks is 
discussed in this paper. To investigate the effect of triaxial stress states on tensile ductility of the 
material, three tensile round bar specimens with different notch root radii are analyzed, see Fig. 1. 
These specimens are also analyzed by Oh et al. (2007) [15] and the present simulation results are 
compared to their experimental data. 
 
The extended damage models described in the previous section are implemented in ABAQUS via a 
user defined material subroutine (UMAT). Two critical numerical procedures are involved in the 
finite element implementations. The integration of the rate form constitutive equations is following 
the backward Euler method by Aravas (1987) [16]. In an implicit code, the linearization modulus is 
needed to construct the stiffness matrix (Jacobin) for Newton scheme which is used to solve the 
global equilibrium equations. The explicit consistent tangent modulus based on a return mapping 
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algorithm provided by Zhang (1995) [17] is adopted in this paper. The coalescence criterion 1, the 
plastic limit load criterion, and the coalescence criterion 2, the equivalent plastic strain criterion, are 
totally incorporated into the extended damage model, respectively.  
 
As the specimens are axisymmetric, eight-node axisymmetric element with reduce integration 
(CAX8R) are used in the finite analyses. The finite element meshes of specimens are presented in 
Fig. 2. The element length of the minimum section where failure will first initiate in the specimen is 
0.15mm.  
 
API X65 steel is high strength and low alloy and the tensile properties of the present material are 
Yong’s modulus, 210.7E = GPa; Poisson ratio, 0.3ν = ; initial yield strength, 0 464.5σ = MPa. 
The uniaxial true stress-strain relationship of the present API X65 steel is approximated using the 
Ramberg-Osgood form fitted to the test data by Oh et.al (2007) [15]. 
 

 

Figure 1. Geometries of notched tensile specimens 
 

 

Figure 2. Axisymmetric finite element meshes for notched tensile bars 
 
3.1. Determination of damage model parameters 
 
In order to apply the present extended damage models to simulate ductile fracture, eight parameters 
should be first determined, including two adjustment factors for Gurson yield function ( 1q , 2q ); six 
parameters related to void volume fraction ( 0f , cf , Ff , Nε , Ns and Nf ). 
 
The classic values ( 1 1.5q = and 2 1.0q = ) given by Tvergaard (1982) [4] have been applied by many 
researchers as the constants for the GT model. Koplik and Needleman (1988) [18] carried out 
micromechanics studies about void growth and coalescence and found that the values of 

1 1.25q = and 2 1.0q =  provide best agreement between the GT model and the finite element results 
of voided cells calculations. Faleskog et al. (1998) [19] found that the q-values exhibit dependence 
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on both the hardening exponent ( n ) and the ratio of initial yield strength over Young’s modulus 
( 0 / Eσ ). The studies of Kim et al. (2004) [20] have shown that, for a given material, the 
q-parameters should vary with stress triaxialities. 
 
The nucleation parameters, Nε  and 0.1Ns = , determined by Chu and Needleman (1980) [6], are 
considered reasonable values for the current application. 0.04Nf = is also suggested and is widely 
used by many researchers. However, the API x65 steel is a high-grade pipeline steel which is very 
clean steel and thus void nucleation is not significant and also delayed until very late in the 
deformation process. For this reason a much smaller value of Nf , 0.0008 is adopted in this study. 
 
Some authors suggests that, as a first approximation, initial void volume fraction 0f  could be taken 
as the volume fraction of MnS inclusions, which is estimated from Franklin’s formula [21] 

0.0010.054 %
%vf S

Mn
⎛ ⎞= −⎜ ⎟
⎝ ⎠

,                         (18) 

where, %S and %Mn are the weight-% of sulfur and manganese, respectively. While voids 
coalescence is automatically determined by two type’s criteria in the extended damage models, 0f  
is the only unknown parameter and is to be fitted. 
 
The void volume fraction at final fracture Ff is strongly dependent on 0f . Since Ff has been 
considered as an unimportant parameter, it can be extrapolated from the empirical equation by 
Zhang (2001) [13]: 

00.15 2Ff f= + ,                             (19) 
 
In the present study, two sets of damage model parameters are involved. For these two groups, 

Nε , Ns and Nf are to be take the same values as discussed previously; 0f is determined by fitting to 
the experiment results for one notched tensile bar and then with this 0f , the void volume fraction at 
final fracture, Ff is obtained by Eq. 19. The critical coalescence porosity cf  is decided by the two 
coalescence criteria: plastic limit load criterion and equivalent plastic strain criterion. The q-values 
are also disparate for the two groups. The classic values ( 1 1.5q = and 2 1.0q = ) are adopted in the 
first group. For the second, 1 1.704q = and 2 0.846q =  are interpolated from the Faleskog’s 
tabulated results based on the measured values of hardening exponent ( n ) and the ratio of initial 
yield strength over Young’s modulus ( 0 / Eσ ). Both sets of damage model parameters are illustrated 
in Table 1. 
 

Table 1. Damage models parameters 
 Nε  Ns  Nf  0f  cf  Ff  1q  2q  

Set1 0.3 0.1 0.0008 0.000125 Criteria1 0.15025 1.5 1.0 
Set2 0.3 0.1 0.0008 0.0005 Criteria2 0.151 1.704 0.846 

 
3.2. Comparison with experimental results  
 
The finite element analyses are applied to predict mechanical behavior for the notched tensile bars 
that had notch root radii of 6mm, 3mm and 1.5 mm. These specimens have different levels of stress 
triaxiality. Porous metal material based on Gurson plasticity theory is also provided by ABAQUS in 
both implicit and explicit code; however, the failure definition is only available in 
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ABAQUS/Explicit. Therefore, it is essential to develop a complete damage model with the ability 
of simulating the whole process from void nucleation to the final damage. Finite element 
predictions both using the developed damage models and porous metal material provided by 
ABAQUS, and experimental results given by Oh et al. (2007) [15] are presented in Fig. 3. Since the 
axial displacement is monitored with the length of 25mm in experiments, the nominal strain and 
nominal stress of FEM results are derived from the mean nodal displacements and total nodal force 
at the section which is 12.5mm from the middle section, respectively.     
 
It can be seen from Fig. 3 that the extended damage models with two different coalescence criteria 
can give almost identical predictions that are very close to the experimental results for all the 
specimens, irrespective of geometry. Simulations without the coalescence model can still predict the 
experimental curve very well before void coalescence. The FEM predictions without the 
coalescence response definition, however, cannot predict the sharp reduction in the slope of the 
nominal stress versus nominal strain curve after instability. 
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Figure 3. Comparison of FEM results with notched tensile tests: (a) R6; (b) R3; (c) R1.5  
 
3.3. Crack formation in the notched bars 
 
One of advantages of the developed model is that both the crack initiation site and propagation path 
can be simulated. Fig. 4 (a) shows the crack initiation location of the R6 notched tensile bar, the 
center site in the minimum section, which is in accordance with results observed from experiments. 
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Fig. 4 (b) illustrates the crack growth path, from the center to the free surface through the minimum 
section of the specimen. The void volume fraction at crack initiation is presented in Fig. 4 (c) and 
the highest void volume fraction site appears in the center of notched bars with no surprise. 
 

Damage element

 

Figure 4. The FEM results of R6 notched tensile bar: (a) (b) Damage elements at and after crack initiation; (c) 
The void volume fraction at crack initiation 

 
3.4. The effect of stress triaxiality 
 
For each specimen, stress triaxiality is highest at the center and lowest at the free edge. Fig. 5(a) 
demonstrates the stress triaxiality value along the minimum section at the loading level 
corresponding to the onset of crack. Higher values of stress triaxiality together with increased 
plastic deformation in the center region of notched specimens accelerate crack initiation and growth 
according to the GT constitutive relationship. Thus, it is not surprising to find that crack initiates at 
the center of specimens. 
  
For specimens with different notch root radii, various stress triaxialities are determined by geometry. 
Larger notch root radii results in smaller stress trixiality ratio. The curve of stress triaxiality ratio T 
versus equivalent plastic strain efε at the center of specimen with load proceeding is presented in 
Fig. 5(b). Various stress triaxialities lead to void coalescence at different plastic deformation 
measured by equivalent plastic strain, illustrated in Fig. 6.  
 
4. Concluding remarks 
 
By incorporating two coalescence criteria, the extended damage models succeed in simulating the 
ductile failure in round tensile bars and also provide a practical approach to simulate the crack 
formation and propagation in small-scale tensile specimens. The present predictions show that:  
 
(1) The extended damage models with two different coalescence criteria can give almost identical 
predictions that are very close to the experimental results for all the specimens. 
(2) For each round tensile bar, crack initiates in the center of specimen where the highest stress 
triaxiatity and largest void volume fraction appear. In addition, crack propagation along the 
minimum section in specimens. 
(3) Distinct geometries represent different stress triaxiatities and different stress triaxiatities lead 
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to void coalescence starting at diverse equivalent plastic strain. 
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Figure 6. Void volume fraction versus equivalent plastic strain 
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