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Abstract  In the present study, we investigate the strength properties of ductile porous materials reinforced 
by rigid particles. The microporous medium is constituted of a Drucker-Prager solid phase containing 
spherical voids; its behaviour is described by means of an elliptic criterion (issued from a modified secant 
moduli approach) whose corresponding support function is determined. The later is then implemented in a 
limit analysis approach in which a careful attention is paid for the contribution of the inclusion 
matrix-interface. This delivers parametric equations of the effective strength properties of the porous material 
reinforced by rigid particles. The predictions are compared to available results obtained by means of 
variationnal homogenization methods successively applied for micro-to-meso and then for meso-to-macro 
scales transitions. Moreover, we discuss in detail the predictions of the material strength under isotropic 
mechanical loadings. To this end, additional static solutions are derived and compared to the kinematics limit 
analysis ones. Finally, we derive an approximate closed-form expression of the macroscopic strength which 
proves to be very accurate. 
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1. Introduction 
 
 Being hard clayey rocks, COx Argillite is a porous clay matrix in which quartz or silica 
inclusions are embedded. In the present study, we mainly aim to derive new closed-form results for 
the strength of the COx argillite, under the assumption that the solid phase of the clay is a 
Drucker-Prager perfectly plastic material. Therefore, the behaviour of the microporous clay is 
described by means of an elliptic criterion [2] whose corresponding support function is determined 
in this paper. Then by using this support function, we explore an alternative approach which can be 
viewed as an extension of the original Gurson model. Instead of a spherical cavity surrounded by a 
matrix, the proposed ’rigid core sphere model’ consists of a rigid spherical core surrounded by the 
homogeneous porous material. The failure criterion of this ’rigid core sphere model’ is derived in 
the framework of the cinematic approach of limit analysis (LA). It is worth noting that from the LA 
point of view the failure mechanism can include a strain concentration at the core-matrix interface 
which can be described mathematically. ([1-3],[6],[9],[11],[12]). Notations: 1 and I are the second 
and fourth order identity tensors. (1/ 3) ,= ⊗ = −1 1J K I�J are respectively the spherical and deviatoric 
projectors of isotropic fourth order symmetric tensor. 
 
2. The micro-to-meso transition: support function of porous matrix 
 
The first homogenization step approach starts at the microscopic scale. At this scale, the porous clay 
matrix is described as a heterogeneous material being made up of a Drucker-Prager perfectly plastic 
solid in which pores are embedded. Let 1d mσ= −σ σ  denote the deviatoric part of the stress tensor 
σ at the microscopic scale. The scalar deviatoric stresses mσ  are defined as : :dσ = Kσ σ  and 

( : : ) / 31mσ = σJ  and the Drucker-Prager criterion reads: 
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 ( ) 0d mT hσ σ+ − ≤ . (1) 
The parameters T and h respectively characterize the friction coefficient and the tensile strength of 
the solid phase of the clay matrix.  
The result of the first homogenization step is the derivation of the strength properties of the porous 
clay matrix at the mesoscopic scale where it is described as a homogeneous material. These 
properties were estimated successfully in [6] by means of the modified secant method. Now 

1d mσ= −σ σ denotes the deviatoric part of the stress tensor σ  at the mesoscopic scale and we 
introduce : :dσ = σ σK  and ( : : ) / 31mσ = J σ . In the situation of associated plasticity, the domain of 
admissible stress states is an ellipse in the (σm, σd)-plane: 

 2 2 2 2
2 2

1 2 / 3 3( , ) ( 1) 2(1 ) (1 ) 0
2

meso
d m m

f fF f T f h f h
T T

σ σ σ+
= + − + − − − ≤σ, . (2) 

 
Note that 0 3 2T f< ≤ / (see [6]), f is the porosity. At the mesoscopic scale, the clay matrix is 
described by the elliptic criterion (2). In the framework of limit analysis theory (see e.g. [10]), a 
dual characterization of the strength criterion ( ) 0F σ ≤  is the support function  

( ) sup( ( ) 0}d d
F

Fπ σ σ= : , ≤  of the convex set of admissible stress states. The support function 
( )dπ  associated with (2) of the porous matrix finally takes the form  

 0
2( ) with
3

d d d
F EQ EQvd d d Hπ σ λ= − = : : . (3) 

 
2 2

0 2 2

3 3 2(1 ) (1 )
2 3 2 1 2 3 3 2

f T Tf h f h
f T f f T

σ λ= − ; = −
− + / −

. (4) 

where 1
α= +H J K  is a fourth order tensor, with  

 
23 2 

3 2
f T

f
α / −
=

+
. (5) 

3. Overall dissipation at the mesoscopic scale 
 
We now focus on the transition from the mesoscopic scale to the macroscopic scale which 
constitutes the second homogenization step and is the main subject of the present paper. We seek the 
macroscopic criterion by means of a Gurson-type approach. As already stated, the microstructure at 
the mesoscopic scale is described by a composite sphere Ωwith a rigid core surrounded by the 
homogenized clay resulting from the micro-to-meso transition. The external (resp. internal) radius is 
denoted by er (resp. ir ). The shell mΩ  ( i er r r≤ ≤ ) around the core represents the clay. The volume 
fraction 3( )i er rρ = /  of the core in the composite sphere is equal to the volume fraction of the rigid 
inclusions in a representative volume element of argillite. 
 
3.1 Velocity field at the mesoscopic scale 
 
For geomaterials, we define here a family of cinematically admissible (k.a.) velocity fields with D , 
depending on one compressible parameter A :  

 
3

2 ( ) De
i m dA r

rr r Ax D A xv e
r

≥ : = + − + ⋅ . (6) 

The strain rate in the clay ( i er r r≤ ≤ ) can be determined from (6):  
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 ( )
3

31 ( ) 1 3d D e
A d m r r

rA D A e e
r

= + + − − ⊗ . (7) 

From (7), with 2
d dD DdD = : , the expression of 

EQ
d  in (3) can be written as  

 ( )
6 2 32

2 2
6 3

2 4( )2 4( ) 1 3
3 3

D
EQ

e d m e
m d r r

r D D A rAd D A e e
r rα

−
= + − + + : − ⊗ . (8) 

 
The velocity is 0Ov =  in the rigid core. Note that the condition 0Av =  on the boundary ir r=  
cannot be fulfilled by the velocity field defined in (6). This implies that the dissipation associated 
with a discontinuity of velocity must be considered at the boundary I ( ir r= ) (section 3.4).  
 
3.2 Macroscopic support function 
 
Defining the macroscopic strength domain homG as the set of admissible macroscopic stress statesΣ , 
the macroscopic support function reads ( ) sup( )D Dhom homGΠ = Σ : ,Σ∈ . Considering the set K of 
k.a. velocity fields with D , ( )DhomΠ  is characterized as [5]:  

 ( )1( ) inf ( ) ( )
v

D d
F

m

hom
A AIK

dV dSvπ π
Ω∈

Π = +
| Ω | ∫ ∫ . (9) 

 
where 34 3erπ| Ω |= / . In the surface integral, v  denotes the velocity discontinuity at the core 
boundary I and ( )vπ  represents the associated surface density of dissipation. In the line of 
reasoning of Gurson approach, ( )DhomΠ  is approximated by the minimal dissipation obtained 
among the velocity fields Av  defined in (6):  

 ( )1( ) inf ( ) ( )D d
F

m

hom
A AIA R

dV dSvπ π
Ω∈

Π = +
| Ω | ∫ ∫ . (10) 

 
For further use, let us introduce the following notation:  

 1 1( ) ( ) ( ) ( )d D D
F

m

m I
A AI

dV A dS Avπ π
Ω

= , ; = ,Π Π|Ω | | Ω |∫ ∫ . (11) 

 
Accordingly: 
 ( ) inf ( )D Dhom

A R
A

∈
Π = Π , . (12) 

 ( ) ( ) ( )D D Dm IA A AΠ , = , + ,Π Π . (13) 
 
Once ( )DhomΠ  is determined, the macroscopic admissible stress states on the boundary homG∂  
are derived according to:  

 ( )D
D

hom∂Π
Σ =

∂
. (14) 

 
The stress state of (14) lies on the boundary of homG  at the location where the normal is parallel to 
D . The overall dissipation of (12) proves to read in the following form:  



13th International Conference on Fracture 
June 16–21, 2013, Beijing, China 

-4- 
 

 

1
2 2 2

0 0

1

2( ) 3
3

D m
uN M u NA Narcsinh Y D
M u

ρ

σ σ λ
⎡ ⎤+⎛ ⎞Π , = − + −⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥⎣ ⎦
. (15) 

 
with the notations introduced in (19), (27) and (28). For the sake of completeness, sections 3.3 and 
3.4 respectively determine the contribution (18) of the shell mΩ  (volume integral in (10)) and the 
contribution (26) of the interface I (surface integral in (10)) which has led to (15).  Section 4 will 
consider the minimization w.r.t. parameter A.  
 
3.3 Contribution of the shell to dissipation 
 
For a given value of parameter A, the contribution of the matrix to the macroscopic dissipation 
reads  

 0
1( )D

EQ
m

m
vA d d dVσ λ⎛ ⎞

⎜ ⎟⎜ ⎟
⎝ ⎠Ω

, = −Π |Ω | ∫ . (16) 

 
In order to obtain an analytical expression of ( )Dm A,Π , the approximation introduced in [4] is 
applied. Let ( )S r  denote the sphere of radius r. As a consequence of the Cauchy-Schwarz 
inequality, it is readily seen that  

 2 2

( ) ( )
4

EQ EQS r S r
d dS r d dSπ≤∫ ∫ . (17) 

 
We observe that the average 

( )
31 r r S re e− ⊗  of 31 r re e− ⊗  over the orientations of re  on the 

sphere ( )S r  is equal to 0. Then, using (8) and (17) in (16), ( )Dm A,Π reads  

 1

6 22
2 20

6

2 2 2

0

1

4 22( ) 4( )
3

3(1 )

D e

m
i

rm e d
m vr

r DAA r D A dr d dV
r

uN M u NNarcsinh A
M u

ρ

πσ λ
α

σ ρ λ

Ω
, = + − + −Π Ω Ω

⎡ ⎤+⎛ ⎞= − − −⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

∫ ∫
. (18) 

with  

 
22

2 2 222 4( )
3

d
m

DAM N D A
α

= + , = − . (19) 

 
3.4. Inclusion-matrix interface 
 
Unlike the classical Gurson’s ’hollow sphere model’, the model proposed in this paper substitutes a 
rigid core for the void in the center of the thick-walled sphere. Therefore, owing to null velocity 
( 0Ov = ) in the rigid core, a velocity discontinuity tales place at the core boundary: 

( ) ( )a aA A r O A rr rv v e v v e= − = . 
  
3.4.1. Surface density of dissipation 
 
The velocity field Av  being discontinuous across the surface I (rigid core boundary), its gradient 
and the associated strain rate are to be defined in the sense of the distribution theory:  
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 ( )1{ }
2

d d IA An nv v δ= + ⊗ + ⊗ . (20) 

where { }d  is the standard expression of the strain rate corresponding to its smooth part, Iδ  is the 
Dirac distribution which support is the surface of discontinuity I  and rn e=  is the unit normal to 
this surface. The surface density of dissipation ( )Avπ  contributed by the velocity jump Av  is 
therefore related to the support function 

F
π  according to (see e.g. [10]):  

 ( ) ( )d
F

I
Avπ π= . (21) 

where d I  is defined as  

 ( )1
2

d I
A An nv v= ⊗ + ⊗ . (22) 

 
Recalling (6) and (22), the strain rate d I  associated with the velocity jump can be obtained and 
written as  

 ( )1 1 1( (1 ) ) ( ) ( )
2

d D DI
i m d dr r r r r rr D A e e e e e e

ρ ρ
⎛ ⎞

= + − ⊗ + ⋅ ⊗ + ⊗ ⋅⎜ ⎟
⎝ ⎠

. (23) 

 
Eventually, the surface density of dissipation is derived from the combination of (21) and (3)  

 0
2( ) with tr
3

d d d
EQ EQ

I I I I I I I
v vA d d d H dvπ σ λ= − = : : ; = . (24) 

 
3.4.2. Contribution of the interface to dissipation 
 
Recalling (16), the macroscopic dissipation related to the part of inclusion-matrix interface 
depending also on the scalar A can be written as  

 0
1( )D

EQ
i

I I I
vr r

A d d dSσ λ⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠=

, = −Π Ω ∫ . (25) 

 
Again, the integration of I

eqd  is approximated by the upper bound (17) which yields  

 
2

0

42( )
3

D d d
i

iI I I

r r

r
A Y X Y H dS

π
σ λ

=
, = − ; = : :Π Ω ∫ . (26) 

 
Using (23), Y takes the form  

 
2 2

15
P QY

α
+

= . (27) 

with  

 [ ]22 2 2 251 6 45(1 2 ) (1 )
2 d mQ D P D Aα ρ α ρ⎛ ⎞= + , = + − −⎜ ⎟

⎝ ⎠
. (28) 

 
In turn, observing that the average D

i
dr r r re e

=
⋅ ⋅  of D

i
dr r r re e

=
⋅ ⋅  over the orientations of re  

on the sphere I is equal to 0, it is readily seen that  

 ( )
( )

1 3 (1 )
a

I
v mS r

X d dS D A ρ= = − −
Ω ∫ . (29) 
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4. Macroscopic criterion 
 
The macroscopic support function can be determined by minimizing the sum 

( ) ( ) ( )D D Dm IA A AΠ , = , + ,Π Π  with respect to the parameter A. Accordingly, the boundary of 
homG  is determined according to (14)[7]:  

 ( ) ( )with 0D D
D

A A
A

∂Π , ∂Π ,
Σ = , =

∂ ∂
. (30) 

 
5. Comparison with the result obtained by a variational approach 
 
Predictions according to (30) of the macroscopic criterion derived in the framework of the 
cinematic approach of limit analysis are now compared with the result obtained by the variational 
approach [11]. For the derivation of their criterion, these authors consider a variational approach in 
the two homogenization steps. Their criterion reads:  
 

 2hom 2 2 2
2

3 3 2 3( ) 1 2(1 ) 0(1 )
2 3 2d m m

f f fF f T f h hf
T f

ρ+ +⎛ ⎞Σ, , = ΘΣ + − Σ + − Σ − =−⎜ ⎟ +⎝ ⎠
. (31) 

with  

 
( )2 2

2

2

1 2 3 32
3 2

4 12 9
6 13 6

1

1

f f
T T

T f
T f

ρ

ρ

+ /

− −
− −

+ −
Θ =

+
. (32) 

Applying the parameters f=0.25 and T=0.525, the comparison between the results predicted by the 
two different methods is shown in Fig.1 As it can be seen in Fig.1, the analytical estimate (31) 
obtained by the variational approach and the prediction from (30) based on the ’rigid core sphere 
model’ show a very good agreement for purely isotropic stress states, both in traction and 
compression. It is noteworthy that the strength under purely isotropic stress seems surprisingly 
almost unaffected by the volume fraction ρ  of the rigid core.  Although the shapes of the yield 
surfaces predicted by the two methods are similar, the strength predicted by limit analysis always 
overestimates that predicted by the variational method. In particular, as far as the strength under 
pure shear loading is concerned, the difference becomes very important when the volume fraction 
of the rigid core ρ is larger. In order to gain a deeper understanding of the effect of the 
parameter ρ , the isotropic strength will now be compared with the exact solution predicted by the 
so-called static approach (sections 6). On the other hand, we note that the strength predicted by limit 
analysis (upper bounds) overestimates that predicted by the variational method under shear 
loading.(We focus on the strength proprieties under isotropic loading. The strength under shear 
loading has not been discussed in the present paper.) 
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Figure 1. Comparison between the results predicted by limit analysis and the variational approach 
for different volume fractions of the rigid inclusion   
-’line’: limit analysis with ρ =0.1,   -’cross’: variational approach with ρ =0.1,   
-’point’: limit analysis with ρ =0.3,   -’box’: variational approach with ρ =0.3,   
-’diamond’: limit analysis with ρ =0.6, -’circle’: variational approach with ρ =0.6 
 
6. Strength under isotropic loading 
 
6.1. Static approach of the limit analysis problem 
 
The theory of limit analysis teaches that a cinematic approach like the Gurson one provides an 
upper bound of the true strength. In order to check the accuracy of a cinematic estimate, it is 
therefore highly desirable to derive a static approach which in turn will deliver a lower bound of the 
true strength. We therefore seek the stress field solution to an isotropic loading (traction or 
compression) in the framework of the ’rigid core sphere model’. The macroscopic stress state is of 
the form 1mΣ . Accordingly the external boundary ( er r= ) is subjected to a radial surface 
force mn nσ ⋅ = Σ . We implement the so-called static approach of limit analysis. It consists in 
deriving a mesoscopic stress field σ  which must be statically admissible with these boundary 
conditions and meet the criterion ( ) 0mesoF σ =  (see (2)). Owing to the spherical symmetry, this 
statically admissible stress field can be sought in the form (spherical coordinates):  
 ( )( ) ( )rr r rr re e e e e eθθ θ θ ϕ ϕσ σ σ= ⊗ + ⊗ + ⊗ . (33) 
 
The boundary condition on the surface er r=  reads  
 ( )rr e mrσ = Σ . (34) 
 
The momentum balance equation 0divσ =  reduces to  

 2 rrrrd
dr r

θθσ σσ −
= . (35) 

 
With the notation rrX θθσ σ= − (note that 2 23

2 dX σ= ), it is found that 2
3m rr Xσ σ= − , so that the 

criterion (2) yields  

 
( ) 22 22

3 2 2
2 2

12 3 2 2 22(1 ) (1 ) 0
3 2 3 3rr rr

f X f T X f h X f h
T T

σ σ
+ − ⎛ ⎞ ⎛ ⎞+ + + − + − − =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
. (36) 

 
The values of X solutions of (36) read:  

 
2 2

2

(3 2 ) 2 ( 1)3 with
2 2 5 3

rrf T hT fX
T f
σ− − − ± Δ

= ,
− −

. (37) 

 2 2 2 2 2 2(2 3)(2 3 ) 4 (2 3)( 1) 2 (5 3)( 1)rr rrf T f hT f f h T f fσ σΔ = + − + + − + + − . (38) 
 
Recalling (35), an ordinary differential equation with respect to rrσ  is obtained in the form:  

 ( )
2

rr
rr

drX
dr
σσ = . (39) 

 
Introducing (37) into (39) and integrating over the interval i er r⎡ ⎤

⎢ ⎥⎣ ⎦, , one obtains  
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2

2 2

1 1 2 5 3ln( )
3 3 (2 3 ) 2 ( 1)

m

rrc
rr

T f d
T f hT f

ρ σ
σ ε

Σ − −
=

− + − + Δ∫ . (40) 

where the notation ( )rr ac rσ=  and the boundary condition (34) at er r=  have been used. Note 
that no boundary condition is available at ir r= . The physical meaning of (40) is the following: 
Whenever there exists a constant c such that (40) is fulfilled (with 1ε = +  or -1), then mΣ  is an 
admissible loading for the value of ρ  at stake. We seek the highest possible value 0m

+Σ >  of mΣ  
(isotropic strength in traction) and the lowest one, denoted by 0m

−Σ <  (isotropic strength on 
compression).  For the simplification of the following discussion, the denominator in the integral 
of (40) is denoted by Dε :  

 2 2(2 3 ) 2 ( 1)rrD T f hT fε σ ε= − + − + Δ . (41) 
 
In order for this integral to be defined, two mathematical conditions are to be met, namely 0Δ ≥  
and 0Dε ≠ . This remark leads to introduce the solutions to the equations of 0Δ =  and of 

0Dε = .   
First, let 1m

±Σ  denote the solutions to 0Δ = , which read:  

 

( ) ( )( )

( ) ( )( )

2

1 2

2

1 2

2 3 2 6 3 2 5 2 3 (1 )

(3 2 )(2 3 )

2 3 2 6 3 2 5 2 3 (1 )

(3 2 )(2 3 )

m

m

T f f f f T f hT

f T f

T f f f f T f hT

f T f

⎡ ⎤
⎢ ⎥
⎢ ⎥

+ ⎣ ⎦

⎡ ⎤
⎢ ⎥
⎢ ⎥

− ⎣ ⎦

+ − + − + −
Σ =

+ −

+ + + − + −
Σ =

+ −

. (42) 

 
Secondly, let 2m

+Σ  (resp. 2m
−Σ ) denote the solution to 0D+ =  (resp. 0D− = ):  

 2 2

2 6 ( 1)

3 2m

T f f Th

f T

⎛ ⎞
⎜ ⎟⎜ ⎟− ⎝ ⎠

+ −
Σ =

−
. (43) 

 2 2

2 6 ( 1)

3 2m

T f f Th

f T

⎛ ⎞
⎜ ⎟⎜ ⎟+ ⎝ ⎠

− −
Σ =

−
. (44) 

 
After some reasoning, the static solution can be finally determined by numerical integration. Then 
the static solution is compared to the cinematic solution in the following subsection.  
 
6.2. Comparison between static and cinematic solutions 
 
The comparison between the static solution and the cinematic solution as functions of the rigid core 
volume fraction ρ  (f=0.25 and T=0.525) has been performed. It is found that the two solutions can 
hardly be differentiated. it can be concluded that they can be regarded as the exact strength of the 
composite material, within the rigid core model. .  
 
6.3. Analytical expressions of the strength under isotropic loading 
 
Due to the complexity of the integrals in (40), these equations can hardly be solved analytically. 
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However, we observe that m
±Σ  remain in the neighborhood of 2m

±Σ . We therefore propose to 
approximate the functions D+  and D−  by series expansions in the neighborhood of 2m

+Σ  and 2m
−Σ . 

In the case of of series expansion to the second order, The analytical solutions at order 2 read:  

 
( )(1 ) 1m

c
c

ηη ρ
κ η ρ

± −
Σ = +

− − +
. (45) 

 
with the following parameters for isotropic compression or traction:  

 

2 2

1 1

1 3 2 1 3 2or
2 6 ( 1) 2 6 (1 )

m m

m m

f f
f f hT f f hT

c c

η η

κ κ

⎧ ⎧
− +⎪ ⎪

⎪ ⎪
⎪ ⎪
⎪ ⎪⎪ ⎪
⎨ ⎨
⎪ ⎪
⎪ ⎪
⎪ ⎪

− +⎪ ⎪
⎪ ⎪⎩ ⎩

= Σ = Σ
+ += =

− −

= Σ = Σ

. (46) 

 
7. An approximate analytical macroscopic criterion 
 
We seek an approximation of the criterion by an ellipse in the ( )m dΣ ,Σ  plane. The ellipse 
intersects the mΣ -axis at the points ( 0)m

−Σ ,  and ( 0)m
+Σ , . The center of the ellipse is located at the 

middle of these points. We still have to determine the ordinate of the center of the ellipse which 
corresponds to the strength under pure shear ( 0mD = ).  
With the condition 0mD = , it is readily seen that the value of the parameter A which minimizes 

( )D AΠ ,  is A=0. With Dm=0 and A=0, closed-form expressions of the mean stress and the 
maximum shear stress can be obtained from (30):  

 0
2 17 4(1 )
3 15m c d c

αλ σ ρ ρ
α, ,

⎡ ⎤+
Σ = − ; Σ = − +⎢ ⎥

⎣ ⎦
. (47) 

 
where 0, ,λ σ α  have been defined in (4) and (5). The subscript c recalls that this point is the center 
of the ellipse.  
Now let us try to approximate the criterion given in parametric form (obtained by means of 
cinematic approach) found in section 4 by an analytical elliptic criterion. Analytical expressions of 
the strength have been established at particular stress states, namely under isotropic loading and 
under pure shear loading (with m λΣ = − ). Recalling (45) (46) for the expressions of ,m m

+ −Σ Σ  in the 
case of a second order expansion, together with (47) for the expression of d c,Σ , the macroscopic 
criterion can be approached by the following analytical elliptic function:  

 
22

1
2

m d

L d c

λ

,

⎛ ⎞⎛ ⎞Σ − Σ
+ =⎜ ⎟⎜ ⎟ ⎜ ⎟Σ / Σ⎝ ⎠ ⎝ ⎠

. (48) 

 
with L m m

+ −Σ = Σ −Σ  and ( ) 2m mλ + −= Σ + Σ / . Recall that , ,m m d c
+ −

,Σ Σ Σ are quantified in (45),(47) by 
(42),(43),(44); and 0, ,λ σ α  are given in (4),(5).  
According to the comparison between the predictions of the analytical macroscopic criterion, (48), 
and the parametric criterion predicted by (30). We found that the comparison shows an excellent 
accuracy of (48).  
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8. Conclusion 
 
On the basis of a limit analysis approach, we have proposed an extension of available models 
(devoted to the macroscopic strength of porous media). This extension concerns porous materials 
with a Drucker- Prager solid phase, reinforced by rigid particles. The proposed model concerns in 
particular, the Callovo Oxfordian clay as a composite material made up of rigid inclusions 
embedded in a porous clay matrix. The obtained results has been compared to the estimate of the 
strength recently derived by [4] on the basis of a variational non linear homogenization approach. A 
good accuracy of the estimate of the strength under isotropic loadings has been shown by a 
comparison with the results of a static (stress based) approach of the limit analysis problem. An 
interesting observation is that the estimates of the isotropic strength in traction or in compression do 
not depend on the homogenization method (limit analysis, variational method). Furthermore, the 
isotropic strength proves to be only slightly affected by the rigid core volume fraction. The practical 
implication is that the isotropic strength properties of the clay matrix and of the Callovo Oxfordian 
argillite are very close, irrespective of the quartz/calcite content. In contrast, a significant 
discrepancy between the failure envelopes is observed on the shear strength for large values of the 
rigid inclusions concentration. 
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