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Abstract  The purpose of this paper is to propose a new macroscopic approach to describe the 
evolving non-local interactions during damage and failure in quasi-brittle materials. A new 
integral-type non-local model is proposed where the weight function is directly built from these 
interactions. The structure is considered as an assembly of inclusions, which are successively 
elastically dilated in order to characterize the transfer of information inside the material. By this 
way, the new macroscale weight function takes into account intrinsically the interactions evolution 
during the material failure similarly as a mesoscale model does.  This new model is first validated 
on simple 1D cases and its performances are compared with the performances of other models 
proposed in the literature. It is shown that the new model is able to describe the continuous/discrete 
transition during the dynamic failure of a rod. It is also shown that the new model is able to describe 
boundary effect during a spalling test. Finally, the model is used to predict damage and failure 
during 3 points bending fracture tests on notched and unnotched concrete beams. 
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1. Introduction 
 
Classical failure constitutive models involve strain softening due to progressive cracking and a 
regularization technique for avoiding spurious strain and damage localization. Different approaches 
have been promoted in the literature such as integral-type non-local models (e.g. [1]), gradient 
damage formulations (e.g. [2]), cohesive cracks models (e.g. [3] with classical finite elements and 
e.g. [4] with extended finite elements), or strong discontinuity approaches (e.g. [5]). Such 
macroscale failure models have been applied on a wide range of problems, including the description 
of damage and failure in strain softening quasi-brittle materials [1], softening plasticity [6–8], creep 
[9] or composite degradation [10]. They may exhibit, however, some inconsistencies such as (i) 
incorrect crack initiation, ahead of the crack tip; (ii) propagating damage fronts after failure due to 
non-local averaging, (iii) incorrect shielding effect with non-zero non-local interactions across a 
crack surface; (iv) deficiencies at capturing spalling properly in dynamics, with spalls of zero 
thickness when the expected spall size is below the internal length of the model (see e.g. [11–14]). 
Moreover changing geometry, e.g. from tensile to bending loads or from unnotched to notched 
specimens, results generally in the loss of predictive capabilities of the macro-scale non-local 
models [15, 16]. On the contrary, it has been shown recently [15, 17] that meso-scale models gave 
good prospect in the prediction of failure and size effect for notched and unnotched concrete beams. 
Indeed meso-scale results have been compared to a new experimental database [16] consisting in 3 
point bending failure tests for similar notched and unnotched concrete specimens of four different 
sizes but made from the same formulation. Not only the different peak loads for all geometries are 
recovered but also the failure softening phase is well predicted which is a more challenging issue. It 
means that the meso-scale models intrinsically contain relevant information leading to a good 
description of the size effect, the boundary effect and the whole failure process. 
At the macro-scale, the prediction of failure in quasi-brittle materials needs enhancement of existing 
non-local damage models and the way the non-locality is taken into account in the macro-scale 
models has to be redefined. Non-locality finds its origin in the interaction between material points 
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undergoing damage in the course of failure [18, 19]. There are several mechanisms, which should 
be considered when looking at the non-locality due to the interaction between damaged points: (i) 
an interaction exists if there is damage, which produces this interaction. Assuming that damage 
corresponds to the growth of micro-cracks, this interaction grows with the size of the defect; (ii) 
shielding effects are also expected: the interaction between two points located apart from a crack 
should not exist; (iii) on free existing or evolving boundaries, and along the normal to these 
boundaries, non-local interactions should vanish as demonstrated in [20]. The internal length in the 
non-local model is the parameter inside the weight function that encompasses the non-locality and 
there is a consensus that this quantity may not be constant, but should depend on the geometry of 
the specimen or on the state of damage. Therefore enhanced non-local models accounting for a 
variation of the internal length have been proposed recently [13, 20, 21]. Proposals discussed in [13, 
20] are considered on academic one-dimensional problems. Their implementation and extension to 
2D or 3D problems are really not trivial as they involve the computation of path integrals, which are 
tedious in a finite element setting. The stress-based model in [21] is more tractable in 2D/3D 
computations but the evolution of non-locality is rather empirical. 
The purpose of this paper is to discuss a new approach to non-local interactions during failure in 
quasi-brittle materials and to upscale the relevant information present from the meso-scale to the 
macro-scale. Therefore, the paper focuses on the estimation of the non-local weight function 
directly from interactions. The material is modeled as an assembly of inclusions and the elastic 
interactions upon dilation of each inclusion are computed in a similar ways to a classical Eshelby’s 
problem [22]. A new interaction-based weight function is then built from these interactions. This 
new interaction-based non-local model is validated on simple 1D problems and its performances are 
compared with the classical integral-type nonlocal model. 
 
2. A new interaction-based non-local model 
 
2.1. Non-locality in integral-type macro-scale models 
 
In classical non-local models, such as the integral-type [1], the internal length is the parameter 
inside the weight function that encompasses the non-locality. Associated with a classical Gaussian 
weight function, it set how and how far the interactions produce inside the materials. However, the 
main drawback of the formulation is that this parameter is constant whatever the geometry and the 
failure process. For instance, close to a boundary, the part of the nonlocal averaging domain that 
protrudes outside the boundary is classically chopped off [1]. Improved models can be found in the 
literature, with a different averaging process close to the boundary of the solid [12,23] or with a 
varying internal length in the course of damage [13, 20, 21]. However, even if the internal length 
variations are based on micro-mechanical concepts, such as the crack growth interaction effect or 
the transfer of information through a damaged area, the final choice of the weigh function and thus 
the evolution of non-locality are rather empirical. 
 
2.2. Non-locality in meso-scale models 
 
In meso-scale models, the non-locality is intrinsically included by representing the meso-structure 
of the materials (e.g. granular, matrix and interfaces in concrete). Therefore, the non-locality does 
not behave the same close to a boundary, close to a damaged area, at initiation or during the failure 
process. It has been shown recently that such models are able to capture challenging issues of 
quasi-brittle materials failure such as predicting the peak loads and even the whole softening 
load-displacement responses of notched and unnotched beams in three-point bending [15, 17]. In 
the following, we aim at building a new interaction-based non-local weight function, which will 
evolve intrinsically when damage occurs inside the materials. 
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2.3. A new interaction-based non-local weight function 
 
The purpose of the paper is to discuss a new approach to non-local interactions during failure in 
quasi-brittle materials and to upscale the relevant information present from the meso-scale to the 
macro-scale. Therefore, we aim at estimating the non-local weight function directly from 
interactions. 
Before we get to the weight function to be inserted in a non-local integral model, let us first 
consider elastic interactions. In order to compute the effect of point ξ on point x, we look at the 
strain induced at point x due to the dilation of ε∗ of a circular inclusion of radius a centered at point 
ξ (see Fig. 1). 
 

 
Figure 1. Non-local contribution seen by a point x when a perturbation is produced in ξ. 

 
Assuming now that the induced strain at point x has been computed, numerically for instance. The 
growth of damage is often defined from energy considerations and we shall look at a norm of this 
strain, denoted as A, instead of the strain tensor itself:  

 A(x,ξ ,ε*,a) = εi (x)
2

i=1

3

∑  (1) 

where εi(x) is the ith principal strain. Note that we could have chosen the true elastic energy instead 
of a norm of the strain tensor. It would not have changed much the following development. Then, 
the interaction is represented by this norm transmitted from the dilation in the inclusion centered at 
ξ to x. It depends on the geometry of the solid, on the inclusion size a, and on the material elastic 
properties inside and outside the inclusion. Formally, the norm A transmitted to x by the dilation ε* 
writes also:  
 A(x,ξ ,ε*,a) = ε* A*(x,ξ ,a)  (2) 

where A* represents the interaction produced at x due to ξ for a unit dilation. 
 
2.4. Final formulation 
 
2.4.1. Non-local averaging 
 
We assume now that it is this interaction A*, which governs the weight function involved in 
non-local averaging. This non-local averaging writes:  

 ε eq (x) = 1
Ωr

ψ(x,ξ )εeq (ξ )dξΩ∫  with Ωr = ψ(x,ξ )dξ
Ω∫  (3) 

where ε eq  is the non-local strain and εeq is the effective strain defined by Mazars [24] as:  

 εeq = εi +

2

i=1

3

∑  (4) 
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where •
+

 is the positive part function, Ω is the volume of the structure, Ωr is a characteristic 

volume introduced in such a way that the non-local operator does not affect an uniform distribution 
of equivalent strain far away from the boundary when no damage occurs in the structure. The 
analogy between the interactions defined above and the weight function ψ suggests:  

 ψ(x,ξ ) ≡ A*(x,ξ ,a) = A(x,ξ ,ε
*,a)

ε*
≡

εi (x)
2

i=1

3

∑

ε*
 with Ωr = A0

*(x,ξ ,a)dξ
Ω∫  (5) 

where A0
*(x,ξ ,a)  is the interaction function reconstructed when no damage occurs in the structure 

(typically at the beginning of the computation). 
 
Practically, the computation of the interactions (function A∗) is performed using a finite element 
setup, which is identical to that of the mechanical problem to be solved, with the same mesh. The 
finite elements which belong to each inclusion centered on a given integration point are subjected to 
a thermal expansion (ε∗ = α∆TI) where α is the thermal expansion coefficient, I is the identity 
tensor, and T is the temperature. If the structure has n inclusions (integration points), n elastic 
computations are performed to build the weight function at each loading step. Since the 
construction process of the interaction-based weight function is cinematically driven by the 
successive thermal expansions, all boundary conditions are clamped during the reconstruction 
process in order to avoid the perturbation of the kinematics on the boundary. 
 
The single model parameter which remains to be determined is the inclusion size a. This inclusion 
size is the internal length involved in the formulation. It ought to be related to the average size of 
the heterogeneities in the underlying heterogeneous material to be modeled. 
 
2.4.2. Constitutive model 
 
Damage is considered to be isotropic. Temperature and time-dependent effects are neglected. 
Damage is a function of the amount of extension in the material, defined locally by the equivalent 
strain (see Eq. 4). The evolution of damage is a function of the non-local equivalent strain and it is 
governed by the Kuhn-Tucker loading-unloading condition (see [15] or [16] for details). 
 
3. Validation and performances 
 
3.1. Clamped bar in tension 
 

 
(L =10 cm, σY =3 MPa, E =30 GPa, εD0 =10-4, σ0 =1.8 MPa, D =70 %) 

 
Figure 2. Simple problem of a clamped bar in tension. 
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We are going to illustrate the influence of the inclusion size a on the weight function and we shall 
look at the evolution of the non-local contributions nearby the boundary of a damaged zone. For 
this purpose, we look at a one-dimensional problem of a clamped bar subjected to tension. The bar 
has a damaged zone in the middle, the rest being undamaged. The distribution of damage is fixed a 
priori. The strain distribution inside the bar corresponds to the onset of evolution of damage from 
this initial state. The strains εu and εt are obtained from a bilinear softening constitutive law (see Fig. 
2).  
 
Although the bar is one-dimensional, the interactions are computed following a 2D, plane stress 
description. The weight functions are computed from a discrete set of circular inclusions located on 
the neutral axis of the bar (see Fig. 2). Their size is much smaller than the bar depth in order to 
avoid interactions with upper and lower boundaries. The finite element meshes consist in triangular 
elements with 1 integration point and the meshes are built in such a way that there are always 4 
elements in the inclusion diameter. Each inclusion is dilated successively in order to reconstruct the 
weight functions. The weight functions are normalized afterwards so that their integral over the bar 
is equal to 1 (through the functional Ωr in Eq. 5). 
 
Fig. 3 presents the influence of the size of the inclusion on the weight function in the case where 
damage is equal to zero. 
 

 
Figure 3. Influence of the inclusion size on the weight function (Reproduced from [25]): 

(a) computed far from the boundaries; (b) normalized and computed far from the boundaries; 
(c) normalized and computed near the boundary. 

 
Far away from the center of the inclusion (Fig. 3.a), the weight function does not depend on the 
inclusion size and decreases as 1/X2 following the Eshelby’s theory (see e.g. [22]). Fig. 3.b presents 
the same influence of the size of the inclusion but on the normalized weight function. If the 
inclusion size tends to zero, the computation of the interactions reduces to the construction of Green 
functions in which it is well known that no internal length is involved. One can demonstrate from 
the construction of the normalized weight function that it becomes a Dirac delta function and the 
constitutive model becomes local. Fig. 3.c shows the same calculation nearby the boundary of the 
solid. The weight function is centered in the inclusion, which sits right next to the boundary. Again, 
upon decreasing of the radius of the inclusions, the weight function converges toward a Dirac Delta 
function. According to the results due to [12], [20] and [23], it is expected that at the boundary of 
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the solid the response becomes local. In mesoscale models, there is a wall effect on the boundaries 
and large inclusions may not be fitted in a boundary layer smaller than their radius. Nearby a 
boundary, the inclusion size is constrained by the distance to the free surface, as it cannot protrude 
outside the solid. This feature can be easily introduced in the present model: at points located close 
to the boundary, the inclusion size is decreased so that it cannot protrude outside the solid. In a 
boundary layer of thickness l, inclusions of diameter l shall be considered only when l < a. Thus 
interactions tend to vanish as we consider points closer and closer to the boundary of the solid.  
 
Fig. 4.b presents the normalized non-local contributions when the non local strain is computed at 
the center of the inclusion located close to the damage band in the region which unloads on the left 
side. The damage band contains 7 inclusions (a = 1.25mm, h = 8.75mm). A comparison with the 
gauss-type weight function used in the classical non-local damage model is also provided (Fig. 4.a). 
With the Gauss weight function and because the strain inside the damage band is larger than outside 
the damage band, the non-local contribution from points lying inside the band is much larger than 
those of points lying outside the band. This will trigger the propagation of the damage band, which 
should expand in the course of the calculation eventually. Fig. 4.b shows that a shielding effect is 
observed with the new formulation. The non-local weights outside the damage band are the most 
important. As a matter of fact, the weight at points lying inside the band is decreasing with 
increasing damage. There is a shielding effect due to damage, which derives directly from the 
method used for the calculation of interactions. In the extreme case of a fully damaged band, the 
dilation of an inclusion sitting inside the band will not be transmitted to the stiffer zone outside the 
band. 
 

 
Figure 4. Response close to a damaged area (Reproduced from [25]): 

(a) original formulation; (b) interaction-based formulation.  
 
There is, however, a limitation to the shielding effect when the radius of the inclusions is larger than 
the width of the damage band. In this case, the interaction induced by the dilation of the inclusion 
will extend across the band. It is expected then that a point lying on one side of the band will feel 
the interaction from points lying on the other side. We recover here the case of an inclusion located 
near a boundary, a fully formed crack being two free boundaries facing each other. In order to avoid 
this problem, we impose that the radius of the circular inclusion reduces as damage grows and we 
adopt the following rule, which encompasses the situation where an inclusion is centered at a point 
nearby a damage zone or near a boundary of the solid:  
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 a(x) =min(a0 1−D(x) ,d(x))  (6) 
where a(x) represents the radius of the sphere containing the integration points where the thermal 
expansion is imposed to reconstruct the interaction-based weigh function, a0 is a model parameter 
related to the maximum aggregate size, D is the local damage, d is the minimal distance from any 
boundary of the structure. 
 
3.2. Dynamic failure of a rod 
 
This example is used to test the relevance of the proposed model and its capabilities to describe 
progressive failure and complete failure. A bar is submitted at both extremities to constant strain 
waves, which propagate toward the center in the linear elastic regime (see Fig. 5 and Table 1). 
When the two waves meet at the center, the strain amplitude is doubled, the material enters the 
softening regime suddenly, and failure occurs. In all computations, the time step is chosen to be 
equal to the critical time step. 
 

Table 1. Characteristics of the rod dynamic failure test 
Parameter L v E ρ lc/a0 εD0 αt At Bt αc 

Unit cm cms−1 MPa kgm-3 cm      
Value 30 0.7 1 1 4 1 1 1 2 0 

 

 
Figure 5. Dynamic failure of a rod: test description and time evolution of the strain amplitude repartition 

along the rod. 
 
In the course of damage, the crack opening displacement (COD) can be estimated using the method 
proposed by [26] and compared to an ideal crack opening profile obtained from a strong 
discontinuity analysis (single crack). The comparison, e.g., the distance between the two profiles, 
indicates how close the strain and damage distributions are from those corresponding to a single 
crack surrounded by a fracture process zone. Details may be found in [13] based on [26].  
 

 
Figure 6. Dynamic failure of a rod (Reproduced from [25]): (left) distance between the computed COD and 
an ideal opening profile obtained for a strong discontinuity versus time; (right) strain in the cracked element 

versus adimensional element size at complete failure. 
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Figure 6 shows that the failure process is better described with the interaction-based model since the 
distance between its crack opening profile and the one corresponding to a strong discontinuity COD 
tends rapidly to zero. At complete failure, the crack opening computed according to the same 
technique should be independent of the element size. In a simple 1D setting, for instance, and 
assuming that the crack opening is smeared over the finite element that contains the discontinuous 
displacement at complete failure, the crack opening is equal to the strain distribution times the 
element size. Therefore, after complete failure, the strain in the cracked element should evolve in 
inverse proportion of the element size (for constant strain element). Figure 6 shows that the 
complete failure is better described with the interaction-based model since the strain versus 
adimensional element size curve follows a linear trend in a logarithmic plot. Moreover the slope is 
coherent with the CMOD estimated at complete failure. Note that in the original model, the element 
size is dimensioned by the internal length lc whereas in the new model, it is dimensioned by the 
characteristic length a0 . For the integration-based model, a peak discontinuity is observed when the 
element size is approximately equal to the characteristics length a0. It means that several elements 
are needed inside the inclusion where the perturbation is produced to well reconstruct the 
interaction-based weight function. 
 
3.3. Spalling test 
 
A second 1D example is used to test the response of the new model close to a boundary. This 1D 
example consists of a spalling test presented by [12] based on a split Hopkinson pressure bar test 
primarily developed by [27] for material dynamic behavior characterization, but often adapted for 
dynamic fracture testing [28, 29]. A striker bar generates a square compressive wave that then 
propagates along the bar in the linear elastic regime. When this compressive wave reaches the free 
extremity of the bar, it is converted into a tensile wave and added to the incoming compressive 
wave (see Fig. 7 and Table 2). The resulting wave stays equal to zero until the tensile one reaches a 
distance from the boundary equal to half the initial signal length. Failure is initiated at this point if 
the amplitude is greater than the tensile strength, generating a spall at a controlled distance from the 
boundary that depends on the initial compressive signal duration. For all numerical studies, the time 
step is chosen to be equal to the critical time step of the corresponding element size. 
 
Figure 7 shows that the spalling failure is better described with the interaction-based model since 
the spall location is predicted inside the bar whereas the damage is maximum on the boundary with 
the original model.  

 

 

 
Figure 7. Spalling test: test description, time evolution of the strain amplitude repartition along the rod (left) 

and damage repartition along the bar after failure (right). 
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Table 2. Characteristics of the spalling test 
Parameter L t0 v E ρ lc/a0 εD0 αt At Bt αc 

Unit cm s cms−1 MPa kgm-3 cm      
Value 20 4 1,5 1 1 4 1 1 1 2 0 

 
4. Concluding remarks 
 
A new interaction-based non-local formulation has been proposed. In this formulation, the material 
is modeled as an assembly of inclusions and the elastic interactions upon dilation of each inclusion 
are computed in a similar ways to a classical Eshelby’s problem. A new interaction-based weight 
function is then built from these interactions. This new interaction-based non-local model has been 
first validated on simple 1D problems and its performances have been compared with the classical 
integral-type non-local model. 
 
Different results have been presented in the paper: 
(i) In the course of damage, the crack opening displacement has been estimated and the 
comparisons show that the failure process is better described with the new formulation. Indeed the 
crack opening profile is very close to an ideal opening profile obtained for a strong discontinuity. 
(ii) At complete failure, the crack opening should be independent of the element size. Therefore, 
after complete failure, the strain in the cracked element should evolve in inverse proportion of the 
element size, assuming that the crack opening is smeared over the finite element that contains the 
discontinuous displacement. It has been shown that for the new formulation, the strain versus 
element size curve follows a linear trend in a logarithmic plot. Moreover the slope is coherent with 
the CMOD estimated at complete failure. 
(iii) Close to a boundary, it has been shown that the spalling failure is better described with the 
interaction-based model since the spall location is predicted inside the bar whereas the damage is 
maximum on the boundary with the original model. 
 
Finally, it has been shown that this new interaction-based formulation fulfill several deficiencies of 
the classical integral-type non-local model and the formulation has to be implemented in 2D in 
order to test its performance on more challenging issues of quasi-brittle materials failure such as 
reproducing the peak loads and even the whole softening load-displacement responses of notched 
and un-notched beams in three-point experimental bending tests [16]. 
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