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Abstract One of the difficulties of the vibration-based damage identification methods is the nonuniqueness 
of the results of damage identification. The different damage locations and severity may cause the identical 
response signal, which is even more severe for detection of the multiple damage. This paper proposes a new 
strategy for damage detection to avoid this nonuniqueness. This strategy firstly determines the approximates 
damage area based on the statistical pattern recognition method using the dynamic strain signal measured by 
the distributed fiber Bragg grating, and then accurately evaluates the damage information based on the 
Bayesian model updating method using the experimental modal data. The stochastic simulation method is 
then used to compute the high-dimensional integral in the Bayesian problem. Finally, an experiment of the 
plate structure, simulating one part of mechanical structure, is used to verify the effectiveness of this 
approach. 
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1. Introduction 
The nonuniqueness of the results of damage identification is the one of the difficulties of the 
vibration-based damage identification methods. The different damage locations and severity may 
cause identical response signal. This problem is even more severe for the detection of the multiple 
damage. The reason is that, the number of the measured points in real application is limited and 
only the limited modes could be estimated. Furthermore, the modelling error and the measurement 
noise is usually inevitable, some erroneous modes could have modal parameters closer to the 
estimated modal parameters than the model with the correct damage locations and amount [1].   
By explicitly considering the modelling error and the measurement noise, Bayesian model updating 
approach is an excellent way to model prediction error and provide the uncertainty information of 
the damage identification results [2]. Based on the Bayesian formula, Bayesian model updating 
approach could incorporate the engineering judgments, the mathematical models and the measured 
data together to make robust identification for damage. The results of damage identification are 
expressed though the post probability density function (PDF), rather than pinpointing a single 
solution in the traditional deterministic approach. The post PDF quantifies the confidence level of 
the identified results, which usually provides an important reference for maintenance decision. 
The fiber Bragg grating (FBG), considered to be a promising technology, has been increasingly 
applied to the SHM process. FBG has several advantages, such as immunity to electromagnetic 
interference, high sensitivity, light weight, and so on. The excellent multiplexing capability of the 
FBG facilitates its use as a distributed sensor system, which not only monitors the local key parts of 
the structure but also captures the overall dynamic information. Panopoulou et al. [3] developed a 
complete damage detection system using FBGs. The dynamic strain response data from the FBG is 
first measured, then the feature indices are extracted by various signal processing methods, and 
finally an artificial neural network is utilized to detect and locate damage. This system has been 
demonstrated by a thin composite panel and a honeycomb structure and is planned for use in a 
future application of an antenna reflector. 
This paper uses the distributed FBG as the sensor network and proposes a new strategy for damage 
detection though two steps, which firstly estimate the approximate damage area from the dynamic 
strain signal using the statistical pattern recognition method, and then accurately evaluates the 
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damage based on Bayesian model updating method using experimental modal data. Lastly, the 
stochastic simulation method is used to solve the Bayesian computation issue and generate the 
samples of the damage parameters identified. 
The following paper is organized as follows. Section 2 summaries the new damage detection 
strategy. Section 3 is the experimental verification section: firstly describes the experimental 
apparatus and procedures, and then presents the detection results of Step 1 and Step 2, respectively. 
A few conclusions are discussed in Section 4. 
 
2. Theoretical Background 
 
2.1. New Damage Identification Strategy 
 
The traditional damage detection methods for SHM can be classified into model-based method and 
non-model-based method [4]. Here, the “model” refers as the physical model of the real mechanical 
or civil structure. The non-model method usually directly uses the signal processing or statistical 
method to determine whether the damage occurs. This method is simple and straightforward, but 
helpless for quantifying the damage, such as the size, orientation and trends of the crack. 
Alternatively, the model-based method requires an accurate physical model and could quantify the 
damage but on the cost of intensive computation. 
Absorbing both advantages of the non-model method and the model-based method, a new damage 
detection strategy is proposed based on FBG and Bayesian model updating method. This process 
consists of the following two phases. (1) Roughly estimate damage area based on the distributed 
dynamic strain signal with the recognition accuracy of the gage lengths of FBG without a detailed 
analytical model. (2) Accurately identify the size, direction and depth of the damage with the 
recognition accuracy of the accuracy of the physical model based on Bayesian model updating 
method. The details of the process are showed in Fig. 1. 
 

 
Figure 1. Detailed process of the new damage detection strategy 

 
Based on the strain measurement, the dynamic strain response of FBG is more sensitive to the local 
small damage than the traditional displacement or acceleration measurements. But the 
environmental and operational variations, such as the change of temperature, usually disguise the 
signal variation induced by damage and cause the false-positive indication. So in Step 1, the 
dynamic strain signal is decomposed into the damage-sensitive signal component using the 
Hilbert-Huang Transform (HHT) method, the autoregressive (AR) model is then used to exact 
damage sensitive features, and lastly the Mahalanobos distance-based method is used to determine 
the approximate damage area, named as the damage suspicious region. But the identification 
accuracy of this region is low, because that is mainly affected by the grating length of FBG and the 
layout density of the sensor network. 
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In Step 2, the Bayesian model updating method is further used to identify the detailed damage 
parameters. The damage parameters are identified only from the damage suspicious region of Step 
1.  
There are several advantages for this new damage identification strategy. First, the number of the 
parameters to be identified has been reduced, which make the cost of the computation greatly drop. 
Second, the search targets of the damage identification only focus to the damage suspicious area, 
rather other the entire structure. The “output-equivalent” issue in the damage mechanism modelling 
can be effectively relieved, which refer to the problem that different damage assumes may produce 
identical out parameters [1]. 
 
2.2. Bayesian Model Updating Framework 
 
Assume the damage could be expressed by the reduction of the element stiffness, but independent 
from the element mass. Therefore, introducing the parameter vector θ = [θ1, ..., θi, ..., θN], which 
represents the contribution of the element stiffness to the system stiffness matrix, the system 
stiffness matrix K can be written as: 
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where N is the degrees of freedom (DOFs) of the linear discrete system, θi (0 < θi < 1) is 
non-dimensional, and the smaller the size of θi , the more serious the damage of element, other 
words, deeper the crack. The combination of adjacent damage element constitutes the shape and 
direction of the crack. Obviously, the accuracy of crack identification depends on the sizes of finite 
elements which can be controlled artificially but usually at the cost of the computation effort [5]. 
Based on Bayesian theorem, when given the measured data D and the probabilistic models M, the 
post PDF of θ can be expressed as: 
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where c is a normalizing constant, p(θ| M) is the prior PDF of θ, and p(D| θ, M) is the likehood 
function. Because that the measured modal frequency usually has the more precision than the other 
modal parameters. Moreover, the most algorithms including the mode shapes have to deal with the 
problems of the finite element (FE) model reduction or mode shape expansion to bridge the gap 
between the real structure and the simulated model. So the modal frequencies are used to construct 
the likelihood function, assume the Nm (≤ N) modes of natural frequency are considered here: 
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where ∑ is the variance matrix of the measured modal frequency, Ns is the number of the measured 
modal frequency sets, µψ is the measured modal frequency of the monitoring structure under 
unknown health status, and the ψ(θ) is computed modal frequency of the FE model. 
The computation of the high-dimensional integral in the Bayesian method is difficult and has 
attracted the attention of many researchers over the decades. Several improved stochastic simulation 
methods have been developed to solve the high-dimensional and complex posterior PDF, such as 
the adaptive Metropolis-Hastings (AMH) [6], the transitional Markov chain Monte Carlo (TMCMC) 
[7], the Hybrid Monte Carlo (HMC) [8], and so on. Inherited from the AMH that introduced a series 
of intermediate PDFs, the TMCMC can not only automatically select the intermediate PDFs but 
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also conveniently evaluate the evidence in the Bayesian model class selection. However, the 
proposal distribution of the TMCMC is the random walk of Gaussian distribution, which cannot 
explore the local properties of the posterior PDF well. So the slice sampling is used as the algorithm 
of the candidate value for TMCMC, which is named as TMCMC-slice.  
The improved TMCMC-slice algorithm, which has integrated the advantages of the TMCMC and 
slice sampling method, is used to generate the sample of the unknown parameters. Based on slice 
sampling, the generation of the candidate value can automatically adapt to the local features of the 
post PDF with fewer user-adjusted parameters. Though the gradually transitioning from the prior 
PDF to the post PDF, TMCMC can easier sample from the intermediate PDFs than other methods. 
And the ratio of Metropolis-Hasting in each iteration step could make the sample concentrate the 
region of high probability, which improves the convergence properties of the TMCMC-slice 
algorithm. 
 
3. Experimental verification 
 
3.1. Experimental apparatus and procedure 
 
A 304 stainless steel plate, which is attached by four bolts on a support, was used to simulate one 
part of the mechanical structure. The geometric parameters of the plate are 500 mm by 500 mm and 
3 mm thick. Twenty-nine gratings were bonded on the surface of the plate according to the 
symmetry of the structure. These gratings were assigned to four individual fibers in order to 
facilitate wiring, and then connected with the four channels of the optical demodulator produced by 
the Micron Optics Inc. The sampling rate of the FBGs was set to 2 kHz. There were also 15 
accelerometers to monitor the modal parameters of the structure. The sampling rate of the 
accelerometer was also set to 2 kHz. The arrangement of the FBGs and accelerometers sensor 
network is shown in Fig. 2. 
Providing the excitation for the plate structure, a vibration exciter was attached to the center of the 
plate using a screw with a 3mm diameter. This vibration exciter was controlled by the LMS modal 
testing system, which produced the 0~8 kHz broad-band stochastic excitation.  
 

 
Figure 2. Layout of the FBG and accelerometer sensor network 

 
The structural defect usually appears in most mechanical structures because of stress concentration, 
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fatigue, or corrosion. Therefore, the experiment here was mainly designed to identify this form of 
damage. The structural defect was simulated by a notch at different depths, which was directly 
machined on a milling machine, as shown in the upper left corner of Fig. 3. Based on the severity of 
the damage, there were four groups. The first group represents the baseline health state without any 
defect; the second group induces a defect whose size is 46 mm by 48 mm with a depth of 1.5 mm 
(50% thickness), as shown in the yellow region of Fig. 2. In the third group, the size of the defect 
remains the same, but the depth is increased to 2.4 mm (80% thickness). Finally, in the fourth group, 
the defect is completely though the plate (3 mm depth). The torque of the four bolts connecting the 
plate and the support was 80 Nm, which was strictly controlled by the torque wrench in each 
experimental group. The image of the experimental real objects can be observed in Fig. 3, and the 
details of the different health states simulated are summarized in Table 1. 

 

 
Figure 3. Picture of the experiment 

 
Table 1. Details of different health conditions 

State Label Description 
Health state State 1 Baseline state, no defects 

Damage state 1 State 2 Defect size: 46mm × 48mm × 1.5mm 
Damage state 2 State 3 Defect size: 46mm × 48mm × 2.4mm 
Damage state 3 State 4 Defect size: 46mm × 48mm × 3mm 

 
3.2. Detection Results of Step 1 
 
For each damage state, 50 sample records are collected as damage identification according to the 
periodicity characteristics of the response signal. In Step 1, the dynamic strain signal from FBG is 
first decomposed into several intrinsic mode functions (IMFs), then the AR-based model is applied 
on the second level IMF component to extract the damage sensitive features and Mahalanobis 
distance-based pattern classification method are used to detect and locate damage. Here the sample 
sets from State 1 (health state), State 2 (damage state 1), State 3 (damage state 2), and State 4 
(damage state 3), totally 200 samples, are used for damage identification. These samples are divided 
into two parts. One is the first 25 samples of State 1 as the training sample set. Another is the test 
sample set composed of the later 25 samples of State 1 and the remaining three damage states, 
totally 175 samples. The identification results of the channel 19, 26, 27, and 28 are shown in Fig. 4, 
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in which the blue bar indicates that no damage occurred, the red bar means the damage, and the 
green horizontal line is the threshold which is calculated assuming that the distribution of the square 
of the Mahalanobis distance is chi-square distribution with the DOFs equal to the AR model order. 
 

 
Figure 4. Results of damage detection and location in channel 19, 26, 27 and 28 

 
There is no damage occurred when the number of blue-bar is larger than the red-bar in each state, 
otherwise, the damage appears. Observing the amount of the red bars, the number of the red bars in 
the channel 19, 27, and 28 is large, so the conclusion is that the approximate location of the damage 
is near the position of the channel 19, 27, and 28, but lacking more detailed information, such as the 
direction, size and severity about the damage. So next the Bayesian model updating method is used 
to identify the specific parameters of the damage. 
 
3.3. Detection Results of Step 2  
 
In order to identify the damage parameters, the plate structure is divided into the 100 rectangular 
elements of 10 by 10. Then the non-dimensional parameter, representing the contributions of the 
element stiffness to the system stiffness matrix, is introduced to model the damage. Based on the 
detection results of Step 1, only the six parameters near the damage approximate area, θi (i = 1, 
2, …, 6), are updated in Bayesian model updating method of Step 2.  
 
3.3.1. FE Model Refinement 
 
A precise model is required before applying Bayesian model updating method for damage 
identification, so the FE model is refined to minimize the model error by conducting a series of 
parametric analysis. 
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The experimental modal frequency is firstly identified by the LMS modal analysis software using 
the acceleration signal. Here the results of State 1 (health state), State 2 (damage state 1), State 3 
(damage state 2), and State 4 (damage state 3) are shown in Table 2. 
 

Table 2. Modal frequency of the healthy and damage states 
Mode State 1 (Hz) State 2 (Hz) State 3 (Hz) State 4 (Hz) 

1 40.9330 42.4120 42.3030 41.9960 
2 137.4630 135.9660 135.6860 134.9330 
3 307.7550 304.8220 305.3790 301.6580 
4 436.2560 436.2100 432.7160 430.4220 
5 690.2900 683.8950 674.1470 679.2060 
6 806.7520 803.8900 802.2440 808.0970 

 
The geometric parameters of the plate are accurately measured as 515 mm by 515 mm and 2.95 mm 
thick. The density of the 304 stainless steel is 8150 kg/m3, the Modulus of Elasticity is 189 GPa, 
and the Poissons ratio is 0.285. The four-node rectangular element is used in the FE model, and the 
size of the grid element is 51.5 mm by 51.5 mm. The nodes of the elements located in four corners 
are fully constrained to simulate the bolt constraint. The comparison of the modal frequency 
between the FE model and the actual undamaged plate is shown in Table 3.  
 

Table 3. Comparison of the modal frequency between FE model and actual plate 
Mode Test(Hz) FEM(Hz) Diff(%)

1 40.9330 40.9361 0.0076
2 137.4630 140.5776 2.2658
3 307.7550 315.8144 2.6188
4 436.2560 427.5859 -1.9874
5 690.2900 703.1238 1.8592
6 806.7520 809.1443 0.2965

 
Although the refined FE model is close to the actual structure, the model error is modelled a 
Gaussian process. Then the post PDF is constructed according to the Bayesian theorem. The 
posterior samples of the damage parameters θi are generated using the stochastic simulation method 
based on TMCMC-slice sampling.  
 
3.3.2. Damage Identification 
 
The damage identification results of the TMCMC-slice algorithm are checked. The statistics of the 
sample are shown in Table 4, where column 1 is the actual values of the parameters, column 2 
shows the identified sample mean, column 3 shows the sample standard deviation (s.d.), and 
column 4 displays the coefficient of variance (c.o.v.). 
 

Table 4. Results of damage identification for plate structure based on TMCMC-slice 
 Actual Identified s.d. c.o.v.
θ1 1.0000 0.9950 0.7742 0.7781
θ2 0.5000 0.5181 0.2100 0.4053
θ3 1.0000 2.6051 1.5647 0.6006
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θ4 1.0000 0.9500 0.8905 0.9374
θ5 1.0000 0.6889 1.4918 2.1655
θ6 1.0000 0.9771 0.9996 1.0231

 
The result of the TMCMC-slice method is satisfactory, only the identified values of θ3 and θ5 are 
deviate from the actual values, but the corresponding standard deviation (s.d.) and coefficient of 
variance (c.o.v.) are also large, which denote that the results have lower credibility. 
Then the sample updated trajectory and probability density distribution are respectively used to 
further analysis the performance of TMCMC-slice, as shown in Fig. 5 and Fig. 6. 

 

 
Figure 5. Sample path of the damage identification results based on TMCMC-slice 

 

 
Figure 6. Probability density of the damage identification results based on TMCM-slice 

 
4. Conclusions 
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This paper proposes a new damage detection strategy which can successfully identify the damage of 
the plate structure. Inheriting the results of Step 1, the non-dimensional stiffness parameters, only 
from the suspicious damage region, are updated using the Bayesian model updating method in Step 
2. The significances of the method are that: when the identification of the detailed damage 
parameters focuses on the suspicious damage area, the number of the parameters needs to be 
identified has been greatly reduced, which can improve the convergence performance of the 
stochastic simulation method. The uncertainty of identification parameters will be reduced. More 
important, the nonuniqueness issue of the results of damage identification could be effectively 
relieved. 
The finite element model which introduces local stiffness reductions representing damage may be 
the simplest method among these damage modelling methods for SHM. But different from the 
traditional usage way as [1, 9, 10] in which a damage threshold must be pre-assumed, this paper 
uses the stochastic simulation method to obtain the samples of the stiffness parameters. The sample 
means are the identified values of the parameters, which represent actual severity of damage. The 
value of the θi is closer to 1, the more health structure; closer to 0, the more serious structure 
damage. The sample variance gives the credibility of the recognition results. The size and 
orientation of the damage can be observed by the combination of the different damage elements. 
The accuracy of damage identification depends on the sizes of the finite elements, which can be 
controlled artificially but usually on the cost of the computation effort. 
Although the experiment result has obtained encouraging results, how to improve the accuracy of 
the damage identification is the focus of the future work. 
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