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Abstract  Phase field fracture models are able to reproduce a wide range of phenomena, which are observed 

in fracture experiments. These phenomena include the nucleation of new cracks in initially undamaged 

material. However, none of the material parameters of a phase field fracture model is directly connected to 

the fracture strength of the material. Thus, the critical stress for the nucleation of new cracks is not a priori 

clear. Crack nucleation in a phase field fracture model is preceded by a localization of the initially 

homogeneous crack field in an area surrounding the nucleating crack. For homogeneous problems, it can be 

shown analytically that the onset of the localization is caused by the loss of stability of the crack-free 

homogeneous solution of the phase field equations at a certain load level. This critical stability load provides 

a definition of the fracture stress in the phase field model depending on the stiffness of the material, the 

cracking resistance and the internal length of the phase field model. The analytical findings are illustrated in 

finite element simulations of the phase field fracture model. Further numerical investigations analyze the 

crack nucleation behavior of the phase field model in more complicated scenarios, where analytical stability 

results are not available.  
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1. Introduction 
 

Conclusions drawn from numerical simulations often play a crucial role in the design process of 

structural components. In order to obtain a reliable prediction of the integrity of a structure, a 

fracture model must be able to reproduce a wide range of phenomena which are observed at fracture 

events. On the one hand, this requires criteria for the stability of pre-existing cracks as well as 

criteria for the nucleation of new cracks in originally undamaged material. On the other hand, the 

fracture model must also predict the geometry of the crack path, including possible kinking of a 

crack or bifurcation into several crack branches. Unlike many other continuum fracture models, 

which are equipped with a whole toolbox of different criteria in order to meet these requirements, 

the phase field approach provides a unified framework for the simulation of the entire fracture 

process. Different phase field fracture models have been introduced and discussed e.g. in references 

[1–6]. More recently, phase field fracture models based on Bourdin's regularization of the 

variational formulation of brittle fracture [7] have been formulated in [8–10]. All these models 

differ in detail, but in all formulations cracks are represented by a scalar phase field order 

parameter, which indicates the condition of the material and interpolates smoothly between broken 

and undamaged material. Cracking is addressed as a phase transition problem, and the crack 

evolution, obtained implicitly through the solution of the coupled field equations, covers the whole 

range of phenomena which need to be considered. Concerning a finite element implementation of 

the fracture model, the phase field approach is advantageous because the diffuse phase field cracks 

do not lead to discontinuous jumps in the displacement field. Thus, the discretization can be done 

with standard finite element shape functions, and no remeshing is required in order to simulate 

crack propagation. 

 

The fracture behavior of phase field fracture models is mainly adjusted by two parameters. The 

cracking resistance    is a material parameter, which is a measure for the surface or fracture energy, 

needed to create new fracture surfaces. By means of configurational forces, it can be illustrated, that 

the propagation of pre-existing cracks in the phase field model agrees with the energetic 

considerations of classical Griffith theory, see e.g. [8, 11, 12]. The second parameter is a length 
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scale  , which primarily controls the width of the transition zone of the order parameter between 

broken and undamaged material. From this point of view, the length scale is merely an auxiliary 

numerical quantity, which recovers the sharp interface limit for    . However, some recent 

publications [13–16] find that, in a one dimensional setting, the length scale   is also crucial for the 

stability of crack-free, spatially homogeneous phase field solutions. At the critical load level, the 

crack-free solution becomes unstable and the phase field order parameter localizes until finally a 

crack forms. Particularly interesting is the fact, that this stability point is also related to the maximal 

stress response of the crack-free phase field solution. This observation allows for the definition of a 

fracture strength in the phase field model, which – at first sight – does not feature a material 

parameter, that is directly connected to the strength of the material, but is able to reproduce crack 

nucleation.  

 

In this work, the crack nucleation behavior of the phase field fracture model introduced in [8] is 

investigated. In a first step, only the one dimensional case is considered. A stability analysis of the 

spatially homogeneous, crack-free solution is outlined, which yields the definition of an effective 

fracture strength in the one dimensional phase field model. In a second step, the problem of crack 

nucleation is considered in the two dimensional setting. However, a rigorous analytical stability 

analysis is generally not possible in the case of arbitrary inhomogeneous stress states. Therefore, 

based on the findings from the one dimensional case, strength estimates are derived for the two 

dimensional setting. These estimates are then compared to the computed stress states at crack 

nucleation in a finite element simulation of the phase field model. 

 

2. Phase field formulation 

 
In phase field fracture models, cracks are approximated by the zero set of the phase field order 

parameter  . This order parameter is a continuous scalar field quantity which resembles a damage 

variable and is often referred to as crack field in this context. It interpolates smoothly between 

cracks, where the order parameter takes the value zero, and undamaged material, where the value of 

the order parameter is one. By means of a degradation function, the crack field is coupled to the 

elastic stiffness tensor   of the material in order to model the change in stiffness between broken 

and undamaged material. The core of the phase field model considered in this work is the energy 

density functional 

         
 

 
              

      

  
         , (1) 

 

which was introduced by Bourdin [7] as a regularized approximation of the energy density of a 

linear elastic fractured body. The first part, which is a function of the linearized strain tensor   and 

the crack field  , is the elastic stored energy. The small positive parameter     in the degradation 

function is a residual stiffness, which is introduced in order to avoid numerical difficulties, where   

equals zero. The second part depends only on the crack field   and its gradient   . An integration of 

the second bracketed term over the entire domain yields an approximation of the surface measure of 

the crack set, when the regularization length   is sufficiently small. Multiplied with the cracking 

resistance    it approximates the Griffith type surface energy of the crack set. By virtue of 

thermodynamic reasoning, the definition of the energy density functional   yields the material law 
 

   
  

  
          (2) 

 

for the stress tensor   which, together with the equilibrium condition 
 

         (3) 
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and the respective boundary conditions, forms the mechanical part of the problem. The evolution of 

the crack field is assumed to follow a Ginzburg-Landau type evolution equation, where the rate    is 

proportional to the negative variational derivative of the energy density functional with respect to  , 

i.e. 

      
  

  
                  

   

  
   . (4) 

 

The symbol   denotes the Laplace operator. The positive scalar kinetic coefficient   describes the 

mobility of the process. In the format of Eq. (4), the evolution equation may be regarded as a 

viscous approximation of the quasi-static case, which is recovered for    . In order to model 

the irreversibility of the fracture process, Dirichlet boundary conditions     are applied to the 

crack field in the subsequent load steps, wherever a crack forms, i.e. the crack field becomes zero. 

At crack free boundaries with outer normal vector  , homogeneous Neumann boundary conditions 

       apply. The coupling of the field equations (Eqs. 2-4) implicitly models the mutual 

interaction between the elastic stress and strain fields and the crack field  . Given a prescribed 

loading history, the successive solution of the coupled system of equations formed by Eqs. (2-4) 

yields the evolution of the mechanical stress and strain fields as well as the evolution of the crack 

field. Note, that no further criteria are required in order to capture even complex crack evolutions, 

such as the coalescence of different cracks, crack branching or the nucleation of new cracks. 

 

3. Crack nucleation  
 

The nucleation of new cracks in an originally undamaged structure is a somewhat delicate topic in 

the context of a phase field formulation. On the one hand, crack nucleation can be observed in 

numerical simulations of the phase field model. On the other hand, none of the parameters of the 

phase field fracture model is directly connected to the fracture strength    of the material. In the 

following, the influences of the different phase field parameters on the effective fracture strength of 

the phase field model are investigated by means of an analytical stability analysis and numerical 

simulations. 

 

3.1. The one dimensional case 

 

3.1.1. Homogeneous solution 

 

In a first step, a one dimensional problem is considered. A homogeneous bar of length    and 

Young's modulus   is strained by an increasing displacement load of           at both ends. 

Before any load is applied, the bar is modeled as undamaged, i.e.    . In the one dimensional 

setting, the equilibrium condition (Eq. 3) immediately implies that the stress   must be constant 

along the entire bar. Under the assumption that the crack field remains spatially constant upon 

loading, it follows from the material law (Eq. 2, where Young's modulus   replaces the stiffness 

tensor  ) that the strain   must be constant, too. The kinematic relation      yields the strain 

value         prescribed by the boundary displacement. The corresponding static solution for 

the crack field 
 

         
  

     
    

 (5) 

 

is obtained from the one dimensional evolution equation. Accordingly, the constant stress in the bar 

is 
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  , (6) 

 

where the contribution of the remaining stiffness   has been neglected for the sake of algebraic 

simplicity. While the homogeneous crack field (Eq. 5) decreases monotonically with the increasing 

strain   , the stress response (Eq. 6) attains a maximal value 
 

   
  

 

  
 
   

  
 , (7) 

 

at a displacement load of  

   
   

  

   
  . (8) 

 

Interestingly, the value of the homogeneous crack field at the maximal stress load is 0.75, 

independent of all of the phase field parameters, see also [10]. This is illustrated in the plots of 

Fig. 1, which show the evolution of the stress response and the crack field with respect to the 

displacement loading for different values of  . 

 

 

 

sxX 

 

 
 

                                           

 

Figure 1. Stress response (black) and crack field (blue) under increasing displacement load for 

         (left),         (center) and         (right) 
 

3.1.2. Stability analysis 

 

In order to analyze the stability of the homogeneous solution (Eq. 5), a family of symmetric test 

functions              with   
        

       and          is introduced. Symmetry is 

postulated for the sake of simplicity, and the restriction   
       ensures differentiability at    . 

Boundary conditions           , kinematic relations, the material law and the fact that the 

stress is constant yield the corresponding strain field   . It can be shown that the first variation of 

the potential 
 

                              
 

 

 

  
 (9) 

 

vanishes for the homogeneous static solution, i.e. 
 

            
         

  
       . (10) 

 

Thus, the homogeneous solution is always a local extremum or a saddle point of the energy 

functional (Eq. 9). The second variation of the potential   with respect to   is given by the 

expression 
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  , (11) 

 

where       denotes the partial derivative with respect to  . Clearly, the second variation can only 

become negative if the factor in front of the last integral in Eq. (11) becomes negative. If the 

displacement load    is smaller than the load   
  (Eq. 8) with the maximal stress response, the 

second variation (Eq. 11) is positive. Thus, the homogeneous solution is a local minimizer of the 

total energy and therefore is considered as stable. If the displacement load    becomes larger than 

the load   
 , the factor in front of the last integral becomes negative and thus, the second variation 

can become negative, too. The homogeneous solution is then no longer a local minimizer and 

becomes unstable. Consequently, the load with the maximal stress response represents a lower 

bound for the stability of the homogeneous solution. A further analysis of the stability of 

homogeneous solutions of different gradient damage formulations, is carried out in [16] and, for a 

broader class of gradient damage models, in [13–15]. Concerning the specific phase field fracture 

model under consideration, the main conclusion from these publications is, that for small values 

of  , the actual stability load lies slightly above the lower bound   
 . Only for rather large  , the 

actual stability load is significantly larger than   
 . However, regarding the regularizing character 

of  , this case is of minor interest. 

 

3.1.3 Non-homogeneous solution 

 

 
Figure 2. Function      and roots    (circles) and    (triangles) for different values of   (left) and the 

respective inhomogeneous crack fields (right) 
 

In this section, a semi-analytical approach to the computation of the non-homogeneous crack field 

at supercritical loading is outlined. More details are reported in [10, 11] for similar phase field 

models. A finite element study of the non-homogeneous solution stages can be found in [12]. The 

static one dimensional evolution equation (Eq. 4) and the material law (Eq. 2) can be recast in the 

format 

 
     

          
              . (12) 

 

Assuming a differentiable, symmetric solution      with a minimum value    at    , an 

integration of Eq. (12) with respect to   over the interval           yields 
 

              
      

  

 
   

         
 

  

 
  

           
       

 
   

      
    

 
  
 

 
                

       

 , (13) 

 

which can be interpreted as a balance law for the phase field variable   with the potential      and 
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the kinetic energy     , see [11]. With the far field boundary conditions          and       
     , the minimum value    can be computed from Eq. (13) as a root of the function      
                . The left plot in Fig. 2 shows the function      for different values of   and 

       . The roots referring to      are marked by triangles, and the roots referring to      

are marked by cycles. The extreme cases     (black) and     
  (magenta) require special 

consideration. For     and the respective homogeneous crack field value     , the function 

     is non-positive in the entire interval      , and the root defining    vanishes. However, for 

   , the root    of      approaches zero. Together with the fact that     represents the 

cracked state, this consideration legitimates to set      in this case. If   approaches the maximal 

value   
 , the roots defining    and    collapse in a single point at       . 

 

Once the minimum value    has been determined, the balance law (Eq. 13) can be exploited to 

compute the solution      of Eq. (12), or rather the inverse  
 

              
   

                
  

    

  
 (14) 

 

of the solution. The right plot of Fig. 2 shows the results of a numerical evaluation of Eq. (14) at 

different stress levels  . The fully cracked solution (black) is virtually identical to the function 

 

             
    

  
  , (15) 

 

which is an approximation of the piecewise defined static solution of the stress free evolution 

equation with boundary conditions        and         . The limit case with maximal stress 

response     
  (magenta) yields the homogeneous solution       . 

 

3.2. The two dimensional setting 

 

3.2.1 Strength estimates from homogeneous test problems 

 

As in the one dimensional setting, the length parameter   has a crucial impact on the fracture 

strength    of the two dimensional phase field model. However, analytical solutions of non-

homogeneous two dimensional problems are generally not available, and thus, a rigorous 

mathematical stability analysis cannot be carried out. In order to determine the fracture strength of 

the two dimensional model, relations between   and    are derived on the basis of the two 

homogeneous problems depicted in Fig. 3. 

 

 
Figure 3. Homogeneous two dimensional problems for the derivation of strength estimates 

 

For both cases, the stationary, homogeneous solution of the evolution equation is given by 
 

           
  

         
 . (16) 
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Due to the different boundary conditions, the elastic contribution differs slightly, depending on the 

ratio of the Lamé constants. 

          
                       

     

    
         

    

  
         

  (17) 

 

The indices       in Eq. (17) refer to the left and right setting depicted in Fig. 3. Neglecting   for 

algebraic simplicity, the corresponding stress in  -direction is 
 

    
      

   

        
     

  (18) 

 

with        . The maximal value 

   
  

 

  
 
      

  
 (19) 

 

is attained at the displacement load 

   
   

  

      
  . (20) 

 

The maximal stress response (Eq. 19) and the corresponding displacement load (Eq. 20) exhibit the 

same asymptotic behavior with respect to   as in the one dimensional setting. For     both 

quantities become infinitely large, while for     their value approaches zero. However, in the 

two dimensional setting, both quantities additionally depend on the factor    defined in Eq. (17). As 

in the one dimensional case, the value of the homogeneous crack field at the maximal stress 

response is 0.75, independent of all of the phase field model's parameters. 

 

 
Figure 4. Simulation setup (left) and crack tip position with respect to the loading (right) 

 

3.2.2 Numerical evaluation 

 

In the following, the maximal stress values from Eq. (19) are compared to the actually computed 

stress states at crack nucleation in the phase field model, in order to evaluate the effective fracture 

strength    of the phase field model. In the finite element simulation, the notched structure, depicted 

in the left plot of Fig. 4, is loaded by a linearly increasing displacement load       acting in  -
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direction. The radius of the circular notch is       . The initial crack field is set to one in the 

entire domain in order to model the undamaged initial state. The material is assumed to be isotropic 

with Lamé constants    , which is equivalent to a Poisson ratio of       . The circular areas of 

diameter         around the load application points (gray) are modeled as stiff by increasing the 

stiffness and the cracking resistance by a factor of 100. The length parameter is        , the 

artificial residual stiffness in broken areas is set to       , and the kinetic coefficient is set to 

         , where the time scale   refers to the load factor     of the displacement load 

             . The size of the time steps is controlled by an adaptive time stepping procedure. 

More details on the finite element implementation of the phase field fracture model can be found 

in [8]. The right plot of Fig. 4 shows the position     of the crack tip on the  -axis with respect to 

the displacement load (black solid line). For the evaluation the node with the largest  -coordinate 

where s equals zero is defined as the crack tip position. Before the onset of fracture, the crack tip 

position is replaced by the position of the notch ground located at       . After the critical load 

level is reached, an initial crack of finite length starting at the notch ground forms brutally along the 

 -axis at a quasi constant load level. The formation of the initial crack is followed by a phase of 

stable crack extension along the  -axis, where the crack grows progressively with the loading. A 

second phase of brutal crack extension is observed when total rupture occurs after the crack tip 

passes       . The dotted lines indicate the beginning and ending of the phase of stable crack 

growth. Remarkably, the crack nucleation at the non-singular stress concentration at the notch as 

well as the transition from brutal to stable crack extension and vice versa are mastered without any 

technical difficulties. 

 

        a)                                                                        b) 

 
        c)                                                                        d) 

 
 

Figure 5. Stress in  -direction (red) and crack field (blue) along the  -axis at different load levels 
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The plots of Fig. 5 show the stress component    (red) and the crack field   (blue) along the  -axis 

at the four load stages marked by the red circles in the right plot of Fig. 4. The vertical black dotted 

line marks the position of the crack tip after the formation of the initial crack. The horizontal black 

solid and dash-dotted lines indicate the strength estimates from Eq. (19) for the cases     and 

   , respectively. At the load level of                  (Fig. 5a), no crack nucleation is 

observed yet, and the numerical solution is stationary and stable. However, very close to the notch 

ground located at       , the stress component    already exceeds the strength estimates. The 

value of the crack field at the notch ground is approximately       , which is higher than the 

assumed critical value        . Figure 5b) shows the  -stress and the crack field at the beginning 

of the phase of brutal crack nucleation at the load level                   . At this stage, the 

numerical solution becomes unstable and can no longer be considered as stationary. The crack field 

immediately at the notch ground is decreased to       . Due to the loss of stiffness caused by the 

decreasing crack field, the stress at the notch ground decreases, too, and a stress peak develops in 

front of the notch. Figure 5c) shows the  -stress and crack field at                   , during 

the phase of brutal crack extension. The crack field has developed its characteristic exponential 

shape (cf. Eq. 15), where the material is not yet broken and is constantly zero in the fractured area. 

During this phase, the peak stress in  -direction significantly exceeds the maximal stress response 

(Eq. 19) of the homogeneous test problems. The last plot, Fig. 5d), shows the stress component    

and the crack field at                  , during the phase of stable crack extension. The peak 

stress is now in good agreement with the strength estimates. The crack field maintains its 

exponential shape and is only shifted in  -direction. 

 

As similar results are obtained in simulations with different values of the length parameter  , the 

simulation results yield the following conclusions. For inhomogeneous stress states with maximum 

stresses below the derived strength estimates, no crack nucleation is observed in the phase field 

model. Also the exceedance of the assumed strength in a small area does not immediately lead to 

crack nucleation. Instead, an initial crack forms, if the stress becomes supercritical in a sufficiently 

large area and the crack field drops below the critical value of 0.75. Thus, the derived strength 

estimates permit to judge the criticality of a computed stress state prior to crack nucleation and may 

therefore be interpreted as the effective fracture strength of the phase field model. 

 

4. Conclusion and outlook 
 

Despite the regularizing character of the length scale  , the stability analysis of the one dimensional 

model and the numerical results obtained for the two dimensional case, yield a more mechanically 

motivated interpretation of the parameter  . The stability analysis, as well as the numerical 

simulations, legitimate to interpret the maximal stress response obtained in homogeneous loading 

scenarios as the effective fracture strength    of the phase field model. As a consequence of this 

interpretation, the length scale   is no longer just an arbitrary regularization length, but can be 

derived according to Eq. (19) from experimentally measurable data, i.e. from the cracking 

resistance   , the fracture strength   , and the Lamé constants   and   of isotropic materials. Thus, 

in conjunction with the other material parameters of the phase field model, the parameter   may be 

regarded as a material parameter itself. For the phase field formulation, the definition of the fracture 

strength, together with the ability to master the transition from a crack free initial state into a 

cracked configuration, justifies the conclusion, that the model naturally combines a strength 

criterion for the nucleation of new cracks with an energetically motivated Griffith type evolution 

law for stable crack growth. 
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The brutal formation of cracks of finite length at crack nucleation, observed in the simulations, 

challenges the limits of the quasi static formulation. Therefore, a dynamic version of the phase field 

model, where dynamic equations of motion replace the static equilibrium condition (Eq. 3), is 

currently being worked on. Within the context of the present work, especially the impact of the 

dynamic effects on the crack nucleation behavior of the phase field model is of interest. Another 

open task for future work is the influence of material inhomogeneities, such as inclusions or pores, 

on the effective fracture strength of the phase field model. 
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