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Abstract: Determination of double-K fracture parameter using both analytical and weight function method is 
carried out in present research. In calculating the cohesive fracture toughness, two situations are divided at 
critical load. Wedge-splitting tests with ten temperatures varying from 20ºC to 600ºC are implemented. The 
complete load-crack opening displacement curves are obtained from which the initial and critical fracture 
toughness could be calculated experimentally. The validation of double-K fracture model to the post-fire 
concrete specimens is proved. Meanwhile the weight function method agrees well with the analytical 
method.  
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1. Introduction 
 
It was established that linear elastic fracture mechanics could be only applicable to large-mass 
concrete structures and could not be applicable to medium and small-scale concrete structures. 
Since late 1970s, many nonlinear fracture models have been proposed by various groups of 
researchers to study the behavior of crack propagation in quasi-brittle materials like concrete [1-6]. 
 
Experimental results show that the fracture process of concrete structures undergoes three main 
stages: (i) crack initiation, (ii) stable crack propagation, and (iii) unstable fracture. Accordingly, the 
double-K fracture criterion initially introduced by Xu and Reinhardt [6] shows the crack initiation, 
crack propagation and failure during a fracture process until the maximum load is reached. And the 
two size-independent parameters, initial cracking toughness, KI

ini and unstable fracture toughness, 
KI

un can be used to study the crack propagation of concrete. 
 
In order to determine the double-K fracture parameters analytically [7, 8] the value of cohesion 
toughness, KI

c due to cohesive stress distribution in the fictitious fracture zone is computed using 
method proposed by Jenq and Shah [9]. In this method, the determination of KI

c is done using a 
special numerical technique because of existence of singularity problem at the integral boundary. 
Under such circumstances, the use of universal form of weight function will provide a closed form 
expression for determining the value of KI

c. And it has proven its accuracy in determining the 
double-K fracture parameter compared to analytical method [10]. 
   
The influences of geometrical parameter [11], specimen geometry [12, 13] and size-effect [7, 8, and 
14] on fracture toughness were studied by various researchers. It was found that the influence of 
ao/D ratio and shape of test specimen are relatively less than the size- effect on the values of 
fracture parameters. 
  
The influence of temperature on the fracture parameters was also considered by several researchers, 
but mainly on the fracture energy and material brittleness [15-19], relatively fewer discussion on the 
fracture toughness [20-21].s Considering there exist many structures subjected to fire or high 
temperatures, the influence of temperature on the fracture properties needs further studied. 
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The present paper is aimed at to determine the residual fracture toughness of wedge splitting 
specimens subjected to high temperatures and prove the validation of double-K fracture model to 
the post-fire concrete. The wedge-splitting experiments of totally ten temperatures varying from 
20ºC to 600ºC and the specimens size 230×200×200 mm with initial-notch depth ratios 0.4 are 
implemented. Both analytical and weight function methods are used to calculate the residual 
fracture toughness parameters. Comparison between the two methods and to experimental results is 
carried out respectively. From the calculated values of double-K fracture parameters using 
experimental results the nondimensional parameter, brittleness of concrete may be conceived. 
Hence, the paper is structured to present the following: (i) details of softening traction-separation 
law of post-fire concrete, (ii) determination of double-K fracture parameters using existing 
analytical method, (iii) implementation of weight function method, and (v) experimental validation 
and comparison of results. 
 
2. Softening traction-separation law of post-fire concrete 
 
The softening traction-separation law is a prior to determine the double-K fracture parameters, at 
room temperature, many expressions have been proposed based on direct tensile tests [22-26]. 
Based on numerical studies, simplified bilinear expressions for the softening traction-separation law 
(illustrated in Fig.1) were suggested by Petersson in 1981[22], Hilsdorft and Brameshuber in 1991 
[25], and Phillips and Zhang in 1993 [26]. The area under the softening curve was defined as the 
fracture energy GF by Hillerborg et al in 1976 [1]. Therefore, one could get the following equation: 
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As a consequence, a general form of the simplified bilinear expression of the softening 
traction-separation law is given as follows:  
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Fig. 1. The bilinear softening traction-separation law 

 
Different values of the break point (σs, ws) and the crack width w0 at stress-free point were used for 
the expression proposed by different researchers. In present work, the bilinear softening function of 
concrete proposed by Petersson is used for post-fire specimens: 
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3. Analytical determination of cohesive fracture toughness   
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3.1 Effective crack extension length and residual Young's modulus 
  
The linear asymptotic superposition assumption is considered in the analytical method presented by 
Xu and Reinhardt [7, 8] to introduce the concept of linear elastic fracture mechanics for calculating 
the double-K fracture parameters. Detailed explanation of the above assumption can be found 
elsewhere [7]. 
 
Based on this assumption, the value of the equivalent-elastic crack length for WS specimen is 
expressed as: 
                        0
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Where c=CMOD/P is the compliance of specimens, b is specimens thickness; h is specimens height 
and h0 is the thickness of the clip gauge holder. For calculation of critical value of equivalent-elastic 
crack length ac, the value of crack mouth opening displacement (CMOD) and P is taken as CMODc 
and Pu respectively.  
 
The residual Young's modulus E is calculated using the P-CMOD curve as:  

                         ]16.9)1(18.13[1 2 −−×= α
ibc

E                          (5) 

Where ci=CMODini/Pini, is the initial compliance before cracking, α= (a0+h0)/ (h+h0). The value of 
critical equivalent-elastic crack length ac and residual Young's modulus E are listed in Table 2. 
 

3.2 Crack opening displacement along the fracture process zone 
 
Since the cohesive stress distribution along the fracture process zone depends on the crack opening 
displacement and the specified softening law, it is important to know the value of crack opening 
displacement along the fracture line. It is difficult to measure directly the value of COD along the 
fracture process zone, for practical purposes the value of COD(x) at the crack length x is computed 
using the following expression [3]: 
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For calculation of critical value of crack tip opening displacement CTODc, the value of x and a (see 
in Fig.4) in Eq. (6) is taken to be ao and ac, respectively. The value of cohesive stress along the 
fictitious fracture zone to the corresponding crack opening displacement is evaluated using bilinear 
stress-displacement softening law as given in Eq. 3. 
 

3.3 Determination of stress intensity factor caused by cohesive force 
  
The standard Green’s function [27] for the edge cracks with finite width of plate subjected to a pair 
of normal forces is used to evaluate the value of cohesive toughness. The general expression for the 
crack extension resistance for complete fracture associated with cohesive stress distribution in the 
fictitious fracture zone for Mode I fracture is given as below:  
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and σ(x) is the cohesive force at crack length x, see in Fig.3, its expression is shown in Eqs.9 or 11.  
At critical condition the value of a is taken to be ac in Eqs.7 and 8. The integration of the Eq.8 is 
done by using Gauss-Chebyshev quadrature method because of existence of singularity at the 
integral boundary.   
                                                                     
As shown in Fig.2, two conditions at critical load, i.e., CTODc ≤ws and ws ≤ CTODc ≤ wc may arise 
at the notch-tip while using bilinear softening function. For specimens subjected to temperatures 
less than 120ºC, the critical CTODc is less than ws; whereas, for temperatures higher than 120ºC, the 
critical CTODc is wider than ws.   

         w

sσ

s w0 w

ft

σ

CTODc

(w)s

        ws w0 w

ft

σ

CTODc

sσ(w)s

   
       (a) When CTODc≤ws                           (b) When CTODc>ws  

Fig.2. Two different situations for CTODc and ws  
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 (a) The linear distribution of cohesive force           (b) The bilinear distribution of cohesive force 

Fig.3. Cohesive force distribution along the crack length at critical load   
 

A. When the critical CTODc corresponding to maximum load Pu is less than ws as shown Fig.2a. 
The distribution of cohesive stress along the fictitious fracture zone is approximated to be linear as 
shown in Fig.3a. The variation of cohesive stress along the fictitious fracture zone for this loading 
condition i.e., ao ≤ a ≤ ac or 0 ≤ CTOD ≤ CTODc is written as:  

            )/()))((()()( 00 aaaxCTODfCTODx cctc −−−+= σσσ                         (9)           
where, σ (CTODc) is the critical values of cohesive stress being at the tip of initial notch. The value 
of σ (CTODc) is determined by using bilinear softening function:    
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B. When the critical CTODc corresponding to maximum load Pu is wider than ws as shown Fig.2b. 
The distribution of cohesive stress along the fictitious fracture zone is approximated to be bilinear 
as shown in Fig.3b. The variation of cohesive stress along the fictitious fracture zone for this 
loading condition, also, ao ≤ a ≤ ac or 0 ≤ CTOD≤ CTODc is written as:  
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The value of σ (CTODc) is determined by using bilinear softening function: 
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The limits of integration of Eq.7 should be taken in two steps: ao ≤ x ≤ as for cohesive stress σ1(x) 
and as ≤ x ≤ ac for cohesive stress σ2(x) respectively. The same Green’s function F(x/a, a/h) for a 
given effective crack extension will be determined using Eq.8. The calculated formula is listed as 
follows: 
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The effective crack length at break point as (shown in Fig.3b), is computed from the following 
nonlinear expression [24] by substituting COD (as), CMOD, ac and h: 
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Where COD (as) is the crack opening displacement at as, ac is the effective crack length (according 
to Eq.4) and h is the specimen height. 
 

4. Proposed method to determine cohesive fracture toughness using weight 
function 
 

4.1. Introduction of weight function  
 
Use of weight functions for calculation of stress intensity factors provides an efficient analytical 
technique for fracture mechanics applications. The method of weight function was initially 
proposed by Bueckner [28] and Rice [29] for determination of stress intensity factors and crack face 
displacements in cracked bodies under arbitrary applied stress fields. The value of cohesive fracture 
toughness Ks may be directly determined using weight function as below: 
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The term m(x, a) in Eq.15 is known as weight function and expressed as: 
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where, a = crack length; σs(x) = the stress distribution along the crack line in the uncracked body 
under the loading case s, which can be determined either experimentally or numerically or 
analytically; dxs= the infinitesimal length along the crack surface; E'= E for plane stress and E'= E/1
−ν2 for plane strain, E and ν are the Young's modulus and the Poisson's ratio respectively. 
 

4.2. Determination of universal weight function for an edge crack in finite width plate 
 
Several one-dimensional weight functions with various mathematical forms are available in 
literature [31-33] but their use is limited. Glinka and Shen [34] introduced one universal form of 
weight function expression having four terms, which can be used for variety of one-dimensional 
Mode I crack problems:  
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The values of coefficients ai, bi, ci, di, ei, fi are given in Table 1. For an edge crack in the finite width 
of plate the accuracy of the weight function are verified with respect to Tada et al. [27] Green’s 
function. 

Table 1 Coefficients of four terms weight function parameters M1, M2 and M3 

i ai bi ci di ei fi 
1  0.0572 -0.8742  4.0466 -7.8994  7.8550  -3.1883  
2  0.4935 4.4365      
3  0.3404 -3.9534  16.1904 -16.0959  14.6302  -6.1307  

 
4.3. Evaluation of cohesive fracture toughness 
 
Once the weight function parameters are determined, Eq.15 is used to calculate the stress intensity 
factor at critical condition due to cohesive stress distribution as shown in Fig.3. The value of σ(x) 
in Eq.15 is replaced by Eq.10, Eq.11, hence the closed form expression of KI

c is can be obtained. 
The value of KI

c using four terms weight function is expressed in the following form. 
  

A. When the critical CTODc corresponding to maximum load Pu is less than ws as shown Fig.2a:  
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After integration of Eq.20 the closed form solution of KI
c is determined as: 
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B. When the critical CTODc corresponding to maximum load Pu is wider than ws as shown Fig.2b.        
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After integration of Eq.22 the closed form solution of KI
c is determined as: 
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5  Calculation of double-K fracture parameters 
 
The two parameters (KI

ini and KI
un ) of double-K fracture criterion for wedge-splitting test is 

determined using linear elastic fracture mechanics formula given in XU[8]:                      

                     )(10),( 2/1
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The empirical expression (24) is valid within 2% accuracy for, 0.2 ≤ α ≤ 0.8.  
 
Equations 24 and 25 can be used in calculation of unstable fracture toughness, KI

un at the tip of 
effective crack length ac, in which a = ac and P = maximum load, Pu for TPBT and CT test 
specimen geometries respectively. The initiation toughness, KI

ini is calculated using Eqs.24 and 25 
when the initial cracking load, Pini at initial crack tip is known. In present paper, the Pini is 
determined by graphical method using the starting point of non-linearity in P-CMOD curve 
described in the following section.  
 
Generally, for post-fire concrete specimens the value of initial fracture toughness KI

ini is far less than 
the value of critical fracture toughness KI

un, especially for higher temperatures. So much more 
consideration is put to the critical fracture toughness KI

un. In double-K fracture model, the following 
relation can be employed:  

                          c
I

ini
I

un
I KKK +=                               (26) 

 
Since there are two methods to determine the cohesive fracture toughness as mentioned above. Here 
we donate the experimental value, analytical value and weight function value of critical fracture 
toughness as KI

un-e, KI
un-A, KI

un-W respectively, and from which we would judge the validation of 
double-K fracture model and weight function method to the post-fire concrete. 
 
6. Experimental validation and comparison of results 
 
6.1. Experimental program and experimental phenomena 
  
To obtain the complete P-CMOD curves, the wedge-splitting tests were implemented. A total of 50 
concrete specimens with the same dimensions 230×200×200 mm were prepared, the geometry of 
the specimens is shown in Fig.4 (b=200mm, d=65mm, h=200mm, f=30mm, a0=80mm, θ=15°). The 
concrete mix ratios (by weight) were Cement: Sand: Coarse aggregate: Water = 1.00:3.44:4.39:0.80, 
with common Portland cement-mixed medium sand and 16-mm graded coarse aggregate. All the 
specimens had a precast notch of 80 mm height and 3 mm thickness, achieved by placing a piece of 
steel plate into the molds prior to casting. Each wedge splitting specimen was embedded with a 
thermal couple in the center of specimen for temperature control.  
 
Nine heating temperatures, ranging from 65ºC to 600ºC (Tm=65ºC, 120ºC, 200ºC, 300ºC, 350ºC, 
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400ºC, 450ºC, 500ºC, 600ºC), were adopted with the ambient temperature as a reference. Because it 
was recognized that the fracture behavior measurements were generally associated with significant 
scatter, five repetitions were performed for each temperature. 
  
A closed-loop servo controlled hydraulic jack with a maximum capacity of 1000 kN was employed 
to conduct the wedge splitting tests (shown in Fig.5). Two Clip-on Extensometers were suited at the 
mouth and the tip of the crack to measure the crack mouth opening displacement (CMOD) and 
crack tip opening displacement (CTOD). To obtain the complete P-CMOD curves (shown in Fig.6), 
the test rate was fixed at 0.4 mm/min.  
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        Fig. 4. The geometry of specimens                    Fig. 5. The experiment set-up 
  

For the specimens exposed to relatively lower temperatures (20ºC~200ºC), the splitting load 
generally reached its peak with no visible crack observed. Once the first crack initiated, the splitting 
load dropped dramatically. For temperatures at 20ºC~200ºC shows that the crack propagated 
vertically to the bottom of the specimen along with the precast notch. At temperatures above 200ºC, 
more than one crack branched from the tip of notch, competing to form the final fracture (shown in 
Fig.7).  
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Fig.6.P vs CMOD curves of specimens with temperatures Fig. 7. Testing phenomenon of post-fire specimens 
 
6.2. Experimental results 
 
Fig.6 shows typical complete load-displacement curves for different heating temperatures up to 
600ºC. The figure shows that the ultimate load Pu decreases significantly with increasing 
temperatures Tm, whereas the crack-mouth opening displacement (CMOD) increases with Tm. The 
initial slope of ascending branches decrease with heating temperatures, and the curves become 
gradually shorter and more extended. 
 
The recorded maximum load Pu, the recorded crack mouth opening displacement CMODc at Pu, the 
calculated crack tip opening displacement CTODc based on Eq.14, the initial cracking load Pini 
determined by graphical method, the calculated residual Young's modulus E based on Eq.5, the 
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double-K fracture parameters, i.e., KI
ini and KI

un-E and the residual fracture energy GF are 
summarized in Table 2. Here we only list part of the statistics.   

Table 2  The experimental results of fracture parameters 
speci
men 

tempe
rature 

Pini/ 
kN 

Pmax/ 
kN 

CMODc 

/mm 
CTODc 

/mm 
E 

GPa 
GF 

N/m 
KI

ini 
MPa.m1/2 

KI
c-A 

MPa.m1/2 
KI

c-W 

MPa.m1/2 
KI

un-E 

MPa.m1/2 
KI

un-A 

MPa.m1/2 
KI

un-W 

MPa.m1/2 

WS1 6.19  8.33  0.174  0.065  15.30 234.15 0.505  0.666 0.691  1.061  1.171  1.196  

WS2 6.28  9.81  0.120  0.039  20.51 483.66 0.523  0.571 0.608  1.070  1.094  1.131  

WS3 7.26  10.40  0.210  0.079  20.66 438.22 0.610  0.968 1.002  1.497  1.578  1.612  

WS4 7.02  7.92  0.152  0.060  18.88 219.39 0.357  0.799 0.818  1.091  1.156  1.175  

WS5 

20ºC 

5.65  9.39  0.237  0.096  15.45 321.05 0.503  0.715 0.742  1.213  1.218  1.245  

Aver  6.55  9.17  0.178  0.068  18.16 339.30 0.498  0.744 0.772  1.186  1.243  1.271  

WS11 5.03  8.37  0.191  0.056  10.65 396.52 0.518  0.45 0.489  0.900  0.968  1.007  

WS13 4.69  8.25  0.224  0.084  11.87 517.82 0.417  0.745 0.754  1.058  1.162  1.171  

WS12 4.71  7.53  0.357  0.152  9.48 654.73 0.419  1.016 1.070  1.202  1.435  1.489  

WS14 2.79  7.53  0.198  0.083  15.42 345.46 0.249  0.858 0.951  1.107  1.107  1.200  

WS15 

120ºC 

—— —— —— —— —— —— —— —— —— —— —— —— 

Aver  4.31  7.92  0.243  0.094  9.48 478.63 0.401  0.767 0.816  1.067  1.168  1.217  

WS21 1.89  3.40  0.653  0.283  2.45 437.92 0.168  0.45 0.478  0.556  0.618  0.646  

WS22 3.48  5.53  0.667  0.280  3.49 611.47 0.309  0.553 0.597  0.841  0.862  0.906  

WS23 1.82  3.38  0.672  0.271  1.91 341.77 0.162  0.374 0.386  0.480  0.536  0.548  

WS24 2.61  4.97  0.577  0.262  1.99 564.12 0.232  0.359 0.381  0.589  0.591  0.613  

WS25 

300ºC 

2.03  4.17  0.651  0.361  4.03 549.99 0.175  0.82 0.824  0.913  0.995  0.999  

Aver  2.37  4.29  0.644  0.291  2.78 501.05 0.209  0.512 0.533  0.676  0.21  0.742  

Aver  2.01  3.78  0.901  0.410  1.56 490.71 0.149  0.374 0.398  0.615  0.526  0.550  

WS36 1.52  3.37  1.009  0.544  1.41 611.53 0.135  0.387 0.401  0.582  0.522  0.536  

WS37 —— —— —— —— —— —— —— —— —— —— —— —— 

WS38 1.52  3.26  1.419  0.660  1.46 482.45 0.135  0.341 0.375  0.527  0.476  0.510  

WS39 1.12  3.07  1.348  0.617  1.34 663.10 0.100  0.42 0.437  0.563  0.520  0.537  

WS40 

450ºC 

0.99  2.94  1.394  0.666  1.58 678.79 0.088  0.513 0.508  0.659  0.601  0.596  

Aver  1.29  3.16  1.293  0.622  1.16 608.97 0.115  0.415 0.430  0.583  0.530  0.545  

WS46 0.76  1.13  1.482  0.684  0.47 228.23 0.067  0.174 0.188  0.221  0.231  0.245  

WS47 0.53  1.48  2.082  0.684  0.48 395.06 0.063  0.209 0.216  0.277  0.284  0.291  

WS48 0.81 1.65  1.908  0.813  1.14 539.22 0.072  0.478 0.512  0.550  0.550  0.584  

WS49 0.58  1.14  1.687  0.973  0.38 331.99 0.052  0.188 0.198  0.225  0.225  0.235  

WS50 

600ºC 

0.62  1.48  2.082  0.727  0.38 273.07 0.068  0.155 0.161  0.213  0.213  0.219  

Aver  0.62  1.38  1.848  0.799  0.57 353.51 0.064  0.241 0.255  0.297  0.301  0.315  

 
6.3. Discussion 
 
In order to express the influence on the residual fracture toughness in detail, Fig.8 plots the 
tendency of initial fracture toughness KI

ini and the unstable fracture toughness KI
un with heating 

temperatures Tm. It is concluded that the two fractures toughness decrease monotonously with Tm 
because of the thermal damage induced by the heating temperatures. 
 
The initial fracture toughness continuously decreases from 0.498 kN at room temperature to 0.269 
kN at 200ºC, 0.115 kN at 450ºC, and finally 0.064kN at 600ºC, with a significant loss of 0.434 kN 
or 96%. The unstable fracture toughness decreases from 1.186 kN at room temperature to 0.297 at 
600ºC, with a significant loss of 0.889 kN or 75%.  
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               (a) The tendency of KI

ini with Tm            (b) The tendency of KI
un with Tm  

               Fig.8. The tendency of residual fracture toughness with heating temperatures Tm 
  
Comparing the result shown in Table 2, it can be known that the value of KI

un-A evaluated by 
formula (26) has a good coincidence to one calculated by inserting the values of Pmax and ac=D into 
the formula (24), i.e. the critical fracture toughness from analytical and experimental method. Fig.9 
shows the relationship between the two parameters. The similar results could be concluded between 
the value of KI

un-W from formula (26) and the experimental results from formula(24). 
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 Fig.9. Comparison between analytical and experimental Fig.10. Comparison between analytical and weight      
         values of critical fracture toughness              function values of critical fracture toughness 
   
In totally 45 effective specimens, the deviation between KI

un-A and KI
un-E of 22 specimens is below 

5%, and of 40 specimens is below 15%, account for 89%of total specimens. Accordingly, the 
number of specimens corresponding to the same deviation between KI

un-W and KI
un-E is 20 and 42, 

respectively. 
 
Fig.10shows the weight function method agrees well with the analytical method, and the deviation 
below 5% accounts for 65% of total specimens.   
                         
7. Conclusion  
 
The determination of double-K fracture parameter using both analytical and weight function 
methods are carried out in present research. In calculating the cohesive fracture toughness, two 
conditions are divided at critical load: for specimens subjected to temperatures less than 120ºC, the 
critical CTODc is less than ws; whereas, for temperatures higher than 120ºC, the critical CTODc 
corresponding to maximum load Pu is wider than ws. This part of work would be a useful 
supplement to the existed analysis.  
 
Wedge-splitting tests with ten temperatures varying from 20ºC to 600ºC are implemented. The 
complete load-crack opening displacement curves are obtained and the initial and critical fracture 
toughness could be calculated experimentally.   
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The validation of double-K fracture model to the post-fire concrete specimens is proved. In totally 
45 effective specimens, the deviation between analytical value KI

un-A and experimental KI
un-E of 22 

specimens is below 5%, and of 40 specimens is below 15%, account for 89% of total specimens. 
Accordingly, the number of specimens corresponding to the same deviation between KI

un-W and 
KI

un-E is 20 and 42, respectively. Meanwhile the weight function method agrees well with the 
analytical method, and the deviation below 5% accounts for 65% of total specimens. 
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