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Abstract  In-plane fracture propagation in particulate materials (rock, concrete) under high tri-axial 
compression is observed in both Mode I tensile cracks (opened by additional load), Mode II shear cracks and 
in Mode I anti-cracks (compaction bands). This commonality suggests that when the conventional fracture 
mechanisms are supressed by high compression, a new universal mechanism takes over. We propose a 
fracture growth mechanism based on mutual rotations of the particles leading to breakage of inter-particle 
bonds followed by particle detachment and re-compaction. The Cosserat characteristic lengths are found to 
be of the order of the particle size. This allows expressing the stress concentrations as an intermediate 
asymptotics (between the Cosserat continuum characteristic length and the crack length). For Mode I crack 
and anti-crack and for Mode II crack the stress singularities are the same as for the cracks in a classical 
continuum, while the moment stress has a stronger singularity (3/2 power). This stress singularity leads to 
relative particle rotations and bending of interparticle bonds. The tensile microstress induced by the bending 
is an order of magnitude higher than the stress associated with conventional stress singularities. 
 
Keywords  Fracture Criterion, Grain rotation, Moment stress, Small-scale Cosserat continuum, Compaction 
band 
 
1. Introduction 

Fracture mechanics recognises 3 main fracture modes, one tensile (Mode I) and two shear (Modes II 
and III). Numerous experiments show that in brittle and quasi-brittle materials without pronounced 
planes of weakness, Mode I cracks are capable of in-plane growth, that is growing in their own 
plane, while Mode II cracks kink. In rock fracturing in compression however two more phenomena 
are observed. Firstly, it is in-plane propagation of shear bands; they start at near the peak load and 
propagate at an angle to the load direction throughout the rock sample separating it into two parts. 
This zone looks like shear (Mode II) crack (e.g. [1-3]) and is usually treated as such, but contrary to 
the behaviour of genuine Mode II crack it does not kink. Secondly, it is the existence and in-plane 
propagation of Mode I anti-cracks, which are the cracks that propagate under compressive load 
applied normally to their surface. In this case the load has the sign reverse to the conventional Mode 
I cracks giving the name to this type of cracks. They are observed in rocks and rock masses as 
compaction bands (e.g. [4-8]) and in laboratory experiments on rock samples in uniaxial 
compression as anti-wing cracks generated at the locations of compressive stress concentration 
created by pre-existing cracks [9, 10]. 
 
In-plane propagation of shear bands is usually associated with the formation of en-echelons of 
tensile (micro) cracks (e.g. [11-14]), however the process by which these cracks eventually merge 
and form the continuation of the shear band is not clear. Indeed, the tensile cracks grow parallel in 
the direction of maximum compressive stress. In order to merge the cracks should either start 
growing in a lateral direction, which is not possible, as they will be closed by the largest principal 
compressive stress, or to initiate shear microcracks by yet unknown mechanism. Thus even in the 
simple 2D case the mechanism of coalescence of en-echelon cracks is not clear. Even less clear is 
the mechanism of crack coalescence in 3D, when the orientation of the cracks forming en-echelon is 
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more complex since they can rotate out of plane still being parallel to the direction of maximum 
compression.  
 
Another challenge is to understand the mechanism of in-plane propagation of compaction bands and 
anti-wing cracks. For instance, the criterion of compaction band propagation cannot be based on 
simple substitution of rock failure in tension with rock failure in compression, as proposed e.g., in 
[15]. Indeed, the failure in compression is preceded by the formation of multitude of parallel tensile 
cracks in the direction of maximum compression (e.g., wing cracks). Such wing cracks are not 
observed in the compaction bands. On the contrary observations of thin sections suggest random 
orientations of cracks and grains within the compaction bands (e.g. [6, 16, 17]). Multiple 
microcracks are even observed in the directions normal to the direction of compression (see for 
instance the thin sections presented in [16]). Obviously, such microcracks cannot be produced by 
compressive stresses but it is conceivable that they are produced as a result of mutual rotations of 
the grains.  
 
We hypothesise that both the compaction band and anti-wing crack propagation involves mutual 
rotation of the grains followed by fragmentation of the cement connecting the grains and subsequent 
rearrangement and compaction of the grains. (We note that the anti-wing cracks were observed in 
rocks with grain structure such as granodiorite, but never in homogeneous materials such as PMMA 
[10].) Given that grain rotations are directly observed in the shear bands in granular materials 
[18-20], we assume that grain rotations can also form the mechanism of in-plane shear band 
propagation. 
 
Continuum modelling of rocks with grain rotations requires the use of Cosserat or micropolar 
continuum (e.g. [21-23]), which additionally considers rotational degrees of freedom and introduces 
the moment stress. Another difference from the classical continuum is that the Cosserat continuum 
possesses characteristic lengths (Cosserat characteristic lengths). Extensive research was devoted to 
cracks in such continua based on considering stress singularities at the crack tip, e.g. [24-27]. These 
singularities reflect the asymptotics of stress concentration when the distance to the crack tip tends 
to zero. In other words the traditional approach considers the distances smaller than the Cosserat 
characteristic lengths.  
 
It was however pointed out in [29-31] that when a Cosserat continuum is used to model a 
particulate material such as rocks with grain microstructure, the asymptotics of small distances to 
the crack tip is beyond the resolution of the continuum. Indeed, a continuum description of a 
heterogeneous material is based on the introduction of representative volume elements whose size, 
H, is naturally much larger than the characteristic microstructural length, lm, which is the scale at 
which the material can no longer be considered smooth. Then the equivalent continuum is 
introduced by averaging the relevant physical fields over these volume elements (e.g. [28]). While 
the equivalent continuum can formally address any distances, including infinitesimal, the 
interpretation of the calculated physical fields in terms of the original material (needed for instance 
to formulate the fracture criteria) is only possible in terms of distances larger than lm. This concept 
poses no restrictions on classical continuum modelling since the classical continua are scale 
independent.  
 
The situation however is different for higher order continua, such a Cosserat continuum, since they 
possess internal length scales. It was shown in [29-32] that for particulate materials in which 
particles are cemented to each other (e.g. rocks with granular structure or concrete), the Cosserat 
lengths are of the order of the grain size, lm. Therefore the only asymptotics in the Cosserat 
continuum that are relevant to the particulate materials are the asymptotics that concern distances 
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r>>lm. This translates into the notion that the meaningful Cosserat solutions are those that 
correspond to the asymptotics r lm →∞ . We call such a continuum the small-scale Cosserat 
continuum. In this approach the relevant stress singularities at the crack tip are given by the 
intermediate asymptotics, which refers to the distances infinitesimal with respect to the crack 
dimensions but infinitely large compared to the Cosserat lengths. It is interesting that the technique 
of obtaining the intermediate asymptotics simplifies the analysis since the derivation of the 
asymptotics is less involved than the orthodox calculation of the stress singularities in Cosserat 
continuum.  
 
In this paper we use the concept of the small-scale Cosserat continuum and propose a universal 
criterion of in-plane growth of shear cracks and compaction bands in compression based on the 
concentration of moment stresses. In this criterion the actual failure is produced by tensile 
fracturing of the cement layers between the grains caused by the bending moments associated with 
the concentration of moment stresses. This mechanism is independent of the sense of the moment 
stress; the latter only controls the location and direction of the induced tensile microcracks.  
 
 
2. Crack propagation caused by moment stress concentration 

The classical fracture criteria are based on the notion of crack propagation by separating two 
surfaces by applied stresses and expressing the conditions of the separation either in terms of 
critical forces or critical energy. In particulate materials consisting of particles (grains) and 
connected by cement bonds another micro failure mechanism can be at work: bending the cement 
layer by mutual rotation of adjacent particles and its cracking by flexure cracks, Fig. 1. Essentially 
what this mechanism is doing is translating the moment stress acting at scale H into microscopic 
tensile stresses at scale lm. Since scale lm is beyond the resolution of the (Cosserat) continuum that 
models the particulate material at scale H>>lm, the failure criterion should be formulated in terms of 
moment stress µij. Given that both stress and moment stress have singularity at the crack tip, we will 
use the approach proposed in [33] in which the crack propagation criterion is based on comparing 
the stress at a certain distance from the crack tip with the local material strength. It is natural to use 
lm in place of such a length (see also [29-31]). Hence, for the simple case of fracture criterion 
controlled by a single moment stress component one has 
 

 
 
µij lm( ) = µc . (1) 

 
Here µij is the moment stress component controlling local failure and the absolute value sign 
indicates that the instance of local failure is independent of the sense of the moment stress; the sign 
only controls the side of the link between the neighbouring particles from which it starts breaking. 
The critical value of moment stress µc represents the particular mechanism of bond breakage and 
microscopic properties of the material of the bond. From the symmetry analysis it can be found 
[29-31] that the moment stresses invoke the bond bending and fracturing shown in Fig. 2. It is seen 
that while the flexure cracks in Mode I crack are roughly coplanar with the main crack, the flexure 
cracks in Mode II crack form en-echelon of microcracks normal to the main crack. Yet, it is the 
bond (cement) breakage associated with relative particle rotations that separate the particles from 
the matrix and thus effect the crack propagation. The formation of en-echelon cracks is thus an 
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accompanying phenomenon. 
 
The proposed fracture criterion involves the use of the main terms of the double asymptotics 
lm H → 0 , H L→ 0 , where L is the characteristic length of the crack. The consistent application 
of this double asymptotics leads to the concept of small-scale Cosserat continuum. 
 
 

H 

lm 

Flexure crack 

 

Figure 1. A volume element of size H loaded by a moment stress causing mutual rotation of 
neighbouring particles. The latter causes flexure (tensile) microcrack at scale lm<<H. 
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Figure 2. The direction of bending and the microcracking for (a) Mode I and (b) Mode II cracks. 
The corresponding bond is broken independently of the direction of microcrack (flexure crack) 

propagation, which is controlled by the sign of the corresponding moment stress. 

 
 
3. Small-scale Cosserat continuum 

We consider here the case of isotropic particulate material with internal rotations. The 
corresponding Cosserat continuum is defined by the following equilibrium and constitutive 
equations in the co-ordinate frame (x1, x2, x3) (e.g. [34]) 
 σ ji, j = 0, µ ji, j +εijkσ jk = 0, i, j =1,2,3  

 
σ ji = µ+α( )γ ji + µ −α( )γ ij +λγ kk
µ ji = γ +ε( )κ ji + γ −ε( )κ ij +βκ kk

 (2) 

where σij and µij are stress and moment stress, εijk is the alternating tensor. Here we use the 
deformation measures - the strain and curvature-twist tensors 
 γ ji = ui, j −εkjiϕk ,   κ ji =ϕi, j  (3) 

where ui and ϕi are independent displacement and rotation vectors respectively and index (,j) 
denotes differentiation with respect to xj, µ, α, γ, ε, λ, β are the Cosserat elastic moduli. 
 
According to [29-31] the main term in the asymptotics lm H → 0  can formally be obtained from 
the equations of the Cosserat continuum with constrained rotations (the couple stress continuum), 
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where rotations are no longer independent of the displacements, but are related in the usual fashion 
 ϕ i = 1

2εijkui,k .  (4) 
 
Thus, the small scale Cosserat continuum formally involves a simpler theory – the couple stress 
theory. Further simplification is achieved if we recall that cracks can be represented as continuous 
distributions of dislocations and disclinations [35-37]. If we are interested in Modes I and II only 
then it can be shown that it is sufficient to consider only dislocations. 
 
The determination of stress field produced by a dislocation involves solving the equations in 
displacements and rotations (with boundary conditions set in displacements) with the subsequent 
determination of the strain measures (3) and stress and moment stress fields using the constitutive 
law (2). In order to solve the equations for dislocations we use the correspondence theorem [24, 38] 
that states that any solution of the Navier equations (equations of equilibrium in displacements) of 
classical elasticity (without moment stress) is also a solution of the corresponding equations of 
equilibrium in displacements in the couple-stress theory, away from singular points [24]. Therefore 
the main asymptotic term of the stress and moment stress fields produced by dislocations can be 
obtained from the classical elastic solutions for the dislocations with the subsequent use of (4) for 
the already calculated displacement field to find the constrained rotations, the deformation measures 
(3) and finally the stress and moment stress using the constitutive relations (2). 
 
Since the cracks are considered as appropriate distributions of dislocations, the above framework 
can be applied to determine the stress and moment stress produced by the cracks in the asymptotics 
of small-scale Cosserat continuum. In particular, this procedure can be used to determine stress and 
moment stress singularities in the intermediate asymptotics shown in Fig. 1. The resulting equations 
are presented in the following section. 
 
 
4. Intermediate asymptotics for moment stress singularity at the crack tip 

We consider a 2D crack in the plane strain approximation and find the stress singularities on the 
line of crack continuation using the theory outlined in the previous section. For a Mode I crack we 
obtain 
 

 σ 11(r)=σ 22 (r)=
KI

2πr
, σ 12 (r)=σ 21(r)= 0, µ13 = 0, µ23 = −

KIlm
2α

2µ
3−2ν
r3 2 2π

 (5) 

 

For a crack of Mode II we obtained the following stress singularities  

 σ 11(r)=σ 22 (r)= 0, σ 12 (r)=σ 21(r)=
KII

2πr
, µ13 =

KIIlm
2α

2µ
4 1−ν( )+ 3
r3 2 2π

, µ23 = 0  (6) 

 
We see that the stress at the crack tip has the conventional square root singularity, while the 
moment stresses has stronger (power 3/2) singularity. This power of the moment stress singularity 
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was reported in [24, 26, 38].  
 
It is also worth mentioning that the moment stress µ23 in Mode I crack has the sign opposite to the 
sign of KI. Thus for the conventional Mode I crack the moment stress is negative: the flexure cracks 
grow in the direction of propagation of the main crack, Figs. 2a, 3a. In the case of anti-crack the 
direction of flexure crack growth is opposite to the direction of propagation of the main crack, Figs. 
2a, 3b. We emphasise that the role of flexure cracks is to initiate the breakage of the cement bonds 
between the particles, while the ultimate fracture propagation is produced by further particle 
rotations and particle detachment form the bulk of the material. 
 
The beginning of flexure crack propagation and the resulting bond breakage are controlled by 
microscopic tensile stress on the edge of the bond, which is caused by moment stress µ23. The value 
of the microscopic tensile stress is determined by the Cosserat continuum stresses σ22 and µ23 acting 
at a point r=lm of the continuum. In other words this is a superposition of the tensile stress generated 
by bending (moment stress µ23) and the normal stress σ22. The latter is positive for Mode I cracks 
and negative for anti-cracks, Fig. 3. 
 
It was shown in [29] for Mode II crack that the microscopic tensile stress created by bending can be 
an order of magnitude higher than the conventional stress applied to the bond. This makes the 
mechanism based on moment stress the main fracture growth mechanism. 
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Figure 3. The directions of flexure crack propagation controlled by the sign of moment stress µ23: 
(a) Mode I crack; (b) anti-crack. 
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5. Conclusions 

Particulate materials such as rocks with granular microstructure and concrete permit relative 
rotations of the grains independent on their displacements. Therefore the criteria of crack 
propagation in such materials should include the grain (particle) rotations and the associated 
moment stresses. This is achieved by considering bending of the cement links/bonds between 
neighbouring particles caused by their relative rotation. The bending produces tensile stress on one 
side of the link, which eventually initiates a flexure crack (microcrack as seen from the scale of the 
propagating fracture). The initiation of the flexure crack leads to the link breakage and ultimately 
effects the particle detachment from the bulk of the material. The fracture mechanism based on link 
breakage and particle detachment is independent of the sign and source of the moment stress; only 
the side of the link where the flexural crack starts and the orientation/position of the link that is 
fractured first are affected. It is assumed that after the first link is broken the resistance to particle 
rotation is diminished sufficiently to permit breakage of other links and allow for the complete 
particle detachment. This criterion can explain the in-plane growth of Mode I and Mode II cracks as 
well as the anti-cracks (compaction bands).  
 
Modelling of fracture propagation that involves moment stress requires the use of Cosserat 
(micropolar) continuum, which includes rotational degrees of freedom on top of the conventional 
translation ones. The Cosserat continuum possesses characteristic lengths that in the case of 
particulate materials with cement bonds/links between the particles are of the order of the particle 
size. Since the resolution of a continuum cannot be better than the microstructural length (the 
particle size in our case) the stress singularity at the crack tip only refers to the distances from the 
crack tip larger than the particle size and therefore larger than the Cosserat characteristic lengths. 
This leads to the concept of small-scale Cosserat continuum that is an asymptotics of small Cosserat 
lengths. This asymptotics formally leads to the Cosserat continuum with constrained rotations (the 
couple stress continuum). Modelling dislocations and Mode I and II cracks in such a continuum 
allows further simplification whereby the stress and moment stress distribution can directly be 
obtained from the displacement field produced by conventional dislocations and cracks by applying 
the relations of the couple stress theory. It was found that while the stresses have conventional 
square root singularity, the moment stresses have singularity of the power 3/2. 
 
The actual fracture criterion is based on the stress and moment stress computed at a distance from 
the crack tip equal to the particle size (the Cosserat length). The tensile stress produced in the 
link/bond between particles by the moment stress is an order of magnitude higher than the one 
associated with the classical stress singularity. This suggests that the rotational mechanism of crack 
growth can actually supersede the traditionally perceived mechanism based on the tensile stress 
concentration only.  
 
The flexure cracks formed in the process of particle rotations are seen at the scale of the crack as 
microcracks which are either coplanar to the main crack in the cases of Mode I crack or anti-crack 
or form en-echelon in the case of Mode II crack. The actual crack propagation is however caused by 
detachment (separation) of the particles from the bulk of the material and hence the appearance of 
en-echelon cracks is essentially a secondary effect accompanying the rotational mechanism of crack 
propagation.   
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