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Abstract An updated Lagrangian formulation is established to deal with the finite deformation of
hyper-elastic body including the discontinuous slips due to the nucleation of lattice defects. The prin-
ciple of virtual power is modified to treat the discontinuous deformation measured by initial lattice
and a computational model is established by a penalty method with Lagrange multiplier. A few ex-
amples are shown for the application of geometrically non-linear deformation of hyper-elastic body
including some dislocation structures and they are compared with the solutions of linear elasticity.
The results have showed that the proposed method can be applicable to the analysis of kink deforma-
tion which had been observed experimentally in long-period stacking ordered magnesium alloy.
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1. Introduction

Magnesium alloys containing long-period stacking order (LPSO) phase have attracted a great deal
of attention. The origins of both high strength and high ductility of these alloys are thought to be
related to the grain refinement of matrix phase and kink deformation band of LPSO phase. Collective
behaviors of dislocations on basal slip planes are important for the formation of kink deformation
which consists of unique arrangement of microscopic lattice defects.

Theoretical studies of the relationship between lattice defect theory and generalized continuum theory
have been carried out since early time, but they are still developping[4, 5, 6, 7].

There are quite a few literature of the deformation analysis using discrete dislocation plasticity and
some disclination dynamics; e.g. deformation mechanism and mechanical properties[1], Interface
crack[2], grain boundary[3], and so on.

However, there are few studies of formulation based on finite deformation except for Refs.[8, 9, 10]

In this study, the boundary value problem based on discrete defect theory is formulated to study the
kink deformation using finite deformation theory. The essential mechanism of kink deformation is
related to instabilities like buckling or localization of deformation. It will be important to consider
the boundary value problem including lattice defects such as dislocations and disclinations.

2. Formulation

Some relative discontinuous displacement on planes ∂Γ is considered in a hyper-elastic body Ω. Cur-
rent coordinates for deformed position x is referred to the reference coordinates X for initial position,
as shown in Fig.1. The displacement u is defined by u = x −X . The tensors F , v, and L = ∂v/∂X
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(l = ∂v/∂x) are deformation gradient, velocity of a material point, and velocity gradient tensors,
respectively An updated Lagrangian formulation is established.
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Figure 1. Boundary value problem of elastic body including discontinuous planes

2.1. Updated-Lagrangian Formulation

St.Venant-Kirchhoff material is assumed to be analyzed. The second Piola-Kirchhoff stress tensor S
is expressed as a function of Green-Lagrange strain E as following:

S AB = C(0)
ABCDECD (1)

where C (0) is the elastic tensor. Truesdell’s stress rate T̆ is defined as follows:

T̆ = Ṫ − lT − T lT + T trl, (2)

where T and Ṫ are Cauchy stress tensor and its material derivative. Then, we assume the linearity
between the Truesdell’s stress rate T̆ and strain rate tensor d with a tensor C :

T̆i j = Ci jkldkl (3)

Using an approximation of the updated Lagrangian formulation, we obtain

Ci jkl =
1
J

FiAF jBFkCFlDC(0)
ABCD. (4)

where

J = det|F |. (5)

For the UL formulation, the principle of virtual power is written as follows:∫
Ω

δdTCddv +
∫
Ω

δlTT ldv =
∫
Ω

ρḃ · δvdv +
∫
∂Ω

ṫ∗ · δvda, (6)

where ρ, ḃ, and ṫ∗ are mass density, body force, and surface traction, respectively.
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2.2. Internal Discontinuous Deformation

The relative slip of bτ(t) on a slip plane ∂Γ is described by

bτ(t)MA = X+A − X−A , on ∂Γ, (7)

where MA is the tangential vector along slip direction. X+ and X− are the upper and lower reference
coordinates on the slip plane at time t, respectively. b means the amount of unit discontinuous slip
such as the norm of Burgers’s vector. A monotonically increasing function τ(t) is varied from 0 to 1;
τ(0) = 0 and τ(tend) = 1, where tend is the finish time. A linearized assumption of slip amount from
t = t(i) to t = t(i) + ∆t gives

bτ(t(i) + ∆t) = bτ(t(i)) + bτ̇∆t, (8)

where τ̇ means the temporal rate of τ. From Eq.(7),

bτ(t(i))MA = (F −1)+Aix
+
i − (F −1)−Aix

−
i , (9)

and

bτ(t(i) + ∆t)MA =
(
(F −1)+Ai + (F −1)+•Ai∆t

)
(x+i + ẋ+i ∆t)

− ((F −1)−Ai + (F −1)−•Ai∆t
)
(x−i + ẋ−i ∆t). (10)

Then, a rate type constraint condition is described by

bτ̇MA−(F −1)+Akl
+
kix
+
i − (F −1)−Akl

−
kix
−
i −
(
(F −1)+Aiv

+
i − (F −1)−Aiv

−
i
)
= 0, (11)

and

bτ̇MA−(F −1)+AkL+kBX+B − (F −1)−AkL−kBX−B −
(
(F −1)+Aiv

+
i − (F −1)−Aiv

−
i
)
= 0, (12)

in current coordinates system and in reference coordinates system, respectively. For the sake of
simplicity in this study, we use the approximation as following

bτ̇F̄iAMA − (v+i − v−i ) = 0, where F̄iA = F+iA + F−iA. (13)

There are several approached for the computational setup. For example, the extended finite element
formulation can be used as well as some cohesive zone model. In this study, we use the double nodes
on the slip plane. A Lagrange multiplier λL is introduced to take into account the constraint condition
(13), and the principle of virtual power (6) is modified as∫

Ω

δdTCddv +
∫
Ω

δlTT ldv +
∫
∂Γ

λL

(
bτ̇F̄M − (v+ − v−)

)
· (δv+ − δv−) ds

=

∫
Ω

ρḃ · δvdv +
∫
∂Ω

ṫ∗ · δvda. (14)
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3. Analysis Examples

3.1. Analysis Model

The isotropic hyper-elasticity model (St.Venant-Kirchhoff material) is used in the finite displacement
assumption:

S AB = CABCDECD, CABCD = 2µδACδBD + λδABδCD, (15)

where S and E are the second Piola-Kirchhoff stress tensor and the Green-Lagrange strain. The
parameter λ and µ are Lamé’s constants. In this study, Poisson’s ratio ν = λ/(2λ+ 2ν) is set to be 0.4.

Some results are compared with the analysis based on linear elasticity in the small displacement
assumption:

Ti j = Ci jklεkl, Ci jkl = 2µδikδ jl + λδi jδkl, (16)

where T and ε is Cauchy stress tensor and small strain tensor, respectively.

Plane strain problems are assumed in a rectangular specimen of 100b × 20b, where b means the
amount of unit discontinuous slip. The displacement on the left edge of the specimen is fixed and
four different problems as shown in Fig. 2 are solved: Fig. 2(a) a dislocation dipole composed of
two dislocations on 1-slip plane, (b) three dislocation dipoles on 3-slip planes, (c) some dislocation
structures arranged on 3-slip planes, and (d) three dislocation dipoles on 3-slip planes under both
compression and shear loading.
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u = 0u = 0
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Figure 2. Schematics of model of analysis

3.2. Results of Analysis

3.2.1. Dislocation Dipoles on Slip Planes

Figure 3 shows the distribution of stress σyy on deformed body for (a) one dislocation dipole on 1-slip
plane model, and for (b) three dislocation dipoles on 3-slip plane model. In Fig.3(a), the dislocation
on the left affects a repulsive image force due to the fixed boundary condition. On the other hand, the
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dislocation on the right affects an attractive image force due to the traction-free boundary condition.
According to the comparison between linear elasticity and hyper-elasticity models, both are almost
same qualitatively.

(i) linear elasticity model (ii) hyper-elasticity model
(a) 1-slip plane model

(i) linear elasticity model (ii) hyper-elasticity model
(b) 3-slip plane model

Figure 3. Distribution of stress σyy on deformed body

For the 3-slip plane model in Fig.3(b), the manners of image forces that act dislocations are similar
to that for the 1-slip plane model in Fig.3(a). However, according to the comparison between linear
elasticity and hyper-elasticity models, there appears some difference. The shape of stress contour has
symmetry with respect to the neutral axis for the linear elasticity model. It is naturally understood,
because the principle of superposition can be assumed in the small deformation theory. On the other
hand, the shape of stress contour has non-symmetry with respect to the neutral axis for the hyper-
elasticity model. This occurs due to the contribution of non-symmetric deformed shape of specimen.

3.2.2. Kink Deformation of Dislocations

The kink deformation in model 1 (Fig. 4(a)) and model 2 (Fig. 4(b)) corresponds to a wedge-type
and ridge-type kink deformations, respectively. The deformation in model 3 (Fig. 4(c)) consists of
two wedge-type kink deformation patterns. When the two edge dislocation array near the center of
specimen merges to a dislocation wall on a single plane, model 3 is reduced to model 2. These types
of kink deformation are often observed in zinc and LPSO magnesium alloy. The discrete disloca-
tion plasticity based on finite deformation theory will be applicable to the investigation of such kink
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deformation mechanism.

(i) σxx (ii) σyy
(a) model 1

(i) σxx (ii) σyy
(a) model 2

(i) σxx (ii) σyy
(a) model 3

Figure 4. Kink deformation expressed using discrete dislocations

3.2.3. Dislocation Dipoles on Slip Planes under Loading

Figure 5 shows the stress distribution σxx on deformed body for three dislocation dipoles on 3-slip
plane model under both compression and shear loading. According to the comparison between (i)
linear elasticity and (ii) hyper-elasticity models, deformed shape of specimens are similar to each
other, but there appears some difference both qualitatively and quantitatively.

(i) linear elasticity model (ii) hyper-elasticity model
Figure 5. Distribution of stress σxx on deformed body under compression- shearing test

The stress contour for the linear elasticity model is simply recognized by the superposition of intrinsic
stress field of dislocations and their image field, and external loading of compression and shearing.
On the other hand, the typical bending stress due to the deformed shape of specimen can be observed
in the shape of stress contour for the hyper-elasticity model.
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4. Conclusions

An updated Lagrangian formulation based on finite deformation theory has been established for struc-
tural analysis of deformation of hyper-elastic body including lattice defects. A few examples have
been shown for the application of the geometrically non-linear deformation of hyper-elastic body in-
cluding lattice defects. The results have showed that the method can be applicable to the analysis
of kink deformation which had been observed experimentally in long-period stacking ordered mag-
nesium alloy. The criterion of dislocation nucleation, short-range interaction of lattice defects, and
driving force of lattice defects should be discussed in the further study.
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