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Abstract  The modeling of fatigue crack initiation and propagation for particulate reinforced composites 
and the study of the behavior of a functionally graded material with interface cracks are facilitated with a 
new Voronoi Cell Finite Element Method (VCFEM), considering the matrix-inclusion interfacial fatigue 
crack and matrix fatigue crack. In the new element, all possible contacts on the crack edge are considered by 
contact seeking and remeshing methods, when the crack is closing under all possible changing loads. The 
fatigue crack initiates when the fatigue damage exceeds certain critical damage value, and fatigue crack 
propagation are simulated by gradual seeking crack propagating directions and new crack tips, using a 
remeshing method that a damaged node at the crack tip is replaced by a pair of nodes, a new crack tip node is 
assigned at the crack propagating directions  and a more pair of nodes are needed to be added on the crack 
edge near the crack tip in order to better facilitate the free-traction boundary condition. The first example has 
been given for Particle-reinforced metal-matrix composites with 20 elliptical inclusions to simulate the 
fatigue crack initiation and propagation under plane stress conditions. It appears that this method is a more 
efficient way to deal with the interfacial damage of composite materials. In the second example, the results 
show that the mechanical properties of functionally gradient materials are influenced by the particles’ size, 
topological structure, and interfacial deboning strength. With the interface cracking the overall stiffness of 
functionally gradient materials is gradually reduced. 
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1. Introduction 
 
Particulate-reinforced metal-matrix composites (MMCs) have attracted significant attention in 
recent times in both the academic community and in the industrial sector. Since MMC combine 
well-known superior properties such as low density, high strength, stiffness, creep and wear 
resistance, they are appropriate candidates for numerous aerospace and automotive applications. 
However, the differences in thermo-mechanical properties of matrix and inclusion develop stresses 
during fabrication and in service. This may lead to voids nucleation, cracking and decohesion at the 
interface, which affects seriously fracture properties. 
The validity of modeling real composites practically with heterogeneities of arbitrary shapes, sizes 
or dispersions, depends considerably on the consideration of the irregular microstructure. The 
accurate micromechanical modeling of actual two-phase materials is very complicated due to the 
irregular microstructural configurations that exist in real materials. 
A large number of models have been developed to predict the effective elastic properties of 
heterogeneous materials and their dependence on materials microstructure, such as homogenization 
theory, cell methods, traditional displacement based FEM, A hybrid finite element approach by 
Zhang and Katsube[1], a Voronoi Cell Finite Element Method (VCFEM) for modeling of 
non-uniform microstructures with heterogeneities introduced by Ghosh and co-workers in a series 
of papers[2~3] and a series of works on VCFEM are done[5-6]. 
Introduction a new Voronoi cell finite element model (VCFEM) on the base of the assumed stress 
hybrid variational principle to model fatigue crack initiation and propagation in a 
Particle-reinforced metal-matrix composites (MMCs) with heterogeneities of arbitrary shapes, sizes 
or dispersions is the objective of the present study. In the new element, considering the 
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matrix-inclusion interfacial fatigue crack, matrix fatigue crack and all possible contact on the crack 
edge, fatigue crack initiation and propagation is simulated by a new remeshing method. All possible 
contact on the crack edge when the crack closed under all possible fatigue loads are sought along 
every crack edge. The fatigue crack initiates when the fatigue damage exceeds certain critical 
damage value. The fatigue crack propagation is simulated by gradually seeking crack propagating 
directions and new crack tips, using a remeshing method that a damaged node at the crack tip is 
replaced by a pair of nodes, a new crack tip node is assigned at the crack propagating directions and 
a more pair of nodes are needed to be added on the crack edge near the new crack tip in order to 
better facilitate the free-traction boundary condition. The first example has been given for 
Particle-reinforced metal-matrix composites with 20 elliptical inclusions to simulate the fatigue 
crack initiation and propagation under plane stress conditions. It appears that this method is a more 
efficient way to deal with the interfacial damage of composite materials. The simulation results are 
compared with those of general fine finite element model and a good agreement is obtained. In the 
second example, the results show that the mechanical properties of functionally gradient materials 
are influenced by the particles’ size, topological structure, and interfacial deboning strength. With 
the interface cracking the overall stiffness of functionally gradient materials is gradually reduced. 
 
2. The Voronoi Cell Finite Element Model 
 
2.1. Hybrid Element Assumptions and Weak Forms 
 
In the Voronoi cell element method, each cell represents a basic structural element of the 
microstructure, which includes a particulate with its matrix neighborhood. A new cell element, 
including an interfacial crack and a matrix crack, is shown in Fig. 1. The matrix and inclusion phase 
in each Voronoi cell eΩ  are denoted by mΩ  and cΩ , respectively, i.e., e m cΩ = Ω ΩU . The bonded 
inclusion-matrix interface is indicated by b∂Ω and the debonded interface is indicated by c∂Ω  on the 
inclusion side and by m∂Ω on the matrix side. The element boundary e∂Ω is assumed to be composed 
of prescribed displacement boundary d

e∂Ω , prescribed traction boundary t
e∂Ω , inter-element 

boundary i
e∂Ω  and free boundary f

e∂Ω , i.e., 
e e e e

d t i f
e∂Ω = ∂Ω ∂Ω ∂Ω ∂ΩU U U . The matrix crack edges 1m∂Ω , 

2m∂Ω , 3m∂Ω  and inclusion crack edge c∂Ω  have outward normals 1mn , 2mn , 3mn and cn , 
respectively, while en  is the outward normal to the element boundary e∂Ω . 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. A Voronoi cell finite element with part interfacial crack and matrix crack 

In an incremental formulation to account for the onset and growth of the fatigue crack, σ  is an 
equilibrated stress field corresponding a strain field ε ; u  is a compatible displacement field on the 
element boundary at the beginning of an increment;  Δσ  is the equilibrated stress increment in eΩ ; 
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Δu is a compatible displacement increment on e∂Ω  and Δf  is a traction increment on the traction 
boundary t

e∂Ω . An element complementary energy function can be expressed as follows:  
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where, bΔu , cΔu , 1mΔu , 2mΔu  and 3mΔu are the displacement increments of the crack edges in an 
element. The total energy for an entire heterogeneous structure that contains N inclusions is 
obtained by adding the element energy functions for N elements:  

 
1

N
mc mc
total element

e=

Π = Π∑  (2) 

By setting the first variation of mc
elementΠ in Eq.(1) with respect to the stress incrementsΔσ to zero, the 

element displacement relations in each of the element eΩ  can be obtained. Setting the first 
variation of mc

elementΠ  with respect to boundary displacement increments Δu  to zero, obtains the 
traction reciprocity conditions on the inter-element boundaries and traction boundaries as shown in 
Fig. 1, and setting the first variation of mc

elementΠ  with respect to boundary displacement increments 
bΔu , cΔu , 1mΔu , 2mΔu  and 3mΔu to zero, obtains the traction reciprocity conditions on the 

interfaces of inclusion-matrix as shown as follows:  
 ( ) ( )b c c b m m⋅ + Δ = ⋅ + Δn nσ σ σ σ on bonded interface b∂Ω   
 ( )c c c⋅ + Δ =n 0σ σ    on debonded interface c∂Ω   
 ( )1 1 1m m m⋅ + Δ =n 0σ σ  on debonded interface 1m∂Ω  (3) 
 ( )2 2 2m m m⋅ + Δ =n 0σ σ    on the first crack edgee 2m∂Ω   
 ( )3 3 3m m m⋅ + Δ =n 0σ σ  on the second crack edge 3m∂Ω   
 
2.2. Method of Solution 
 
The stresses in the matrix and inclusion phases can be individually described to accommodate stress 

jumps across the interface. The expressions may be assumed for stress functions ( ),x yΦ in the 

matrix and inclusion phases in the form as 
 m m mΔ = ΔPσ β      (in mΩ ) (4) 
 c c cΔ = ΔPσ β       (in cΩ ) (5) 
where mΔβ and cΔβ  correspond to a set of undetermined stress coefficients; mP  and cP are 
matrixes of interpolation functions. Compatible displacement increments on the element boundary 

e∂Ω  as well as on the crack edges b∂Ω , c∂Ω  and m∂Ω  are generated by interpolating in terms of 
generalized nodal values as: 

 { }eΔ = Δu L q , on e∂Ω ;   
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 { }b b bΔ = Δu L q , on b∂Ω ;   

 { }c c cΔ = Δu L q , on c∂Ω ;   

 { }1 1 1m m mΔ = Δu L q , on 1m∂Ω ; (6) 

 { }2 2 2m m mΔ = Δu L q , on 2m∂Ω ;  

 { }3 3 3m m mΔ = Δu L q , on 3m∂Ω    

where eΔq , bΔq , 1mΔq , 2mΔq , 3mΔq and cΔq are generalized displacement increment vectors, and 
L , bL , 1mL , 2mL , 3mL and cL are interpolation matrices. Substituting Eq. (4), (5) and (6) into the energy 
function (1), and setting the first variations of mc

elementΠ  with respect to the stress coefficients mΔβ and 
cΔβ , respectively to zero,  yields following two weak forms of the kinematic relations. Let 

{ }idβ corresponds to the correction to βΔ ’s in the ith iteration, the weak form of the kinematic 

relations may be expressed as:  
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where 
 Tm m m

mm
dΩ= Ω∫H P S P  (8) 
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or in a condensed form 
 1i id d−= H G qβ  (17) 
Setting the first variation of the total energy functional (1) with respect to eΔq , bΔq , mΔq and cΔq  
to zero, results in the weak form of the traction reciprocity conditions as 
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Substituting Eq. (17) into the weak form expressions of the traction reciprocity conditions Eq. (18), 
yields: 
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Eq. (21) is used to iteratively calculate for the nodal displacement increments. Then, the stress 
coefficients may be calculated by Eq. (17) and the stresses at any location within the element may 
be obtained from (4) and (5). 
 
2.3. Simulation of Fatigue Crack Initiation and Propagation 
 
Under the constant amplitude loadings, the fatigue damage under a non-linear fatigue damage rule  
evolutes as:  

 [ ] (1 )
2 (1 )N B

β γδω σ ω
δ ω

−Δ
= −

−  (22) 

where B，β and γ are the material constants. Eq. (22) deduces the fatigue life: 

 1( , ) [ ]
1 2 ( )FN

B
σσ σ

β γ σ
Δ

Δ =
+ +

 (23) 

For simulating fatigue damage accumulation under gradual step-by-step constant amplitude 
loadings, the fatigue damage accumulation at the nth step is deduced by integrating Eq. (22). 
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11 [(1 ) ( ) ]
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m n m
n n nmN
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ω −

Δ
= − − −ω  (24) 

where where 1nω − is the total fatigue damage at the end of the n-1th step; nN  is the cycle life 
increment at the nth step; nσΔ is the nth constant amplitude loading ; the variable 1m γ β= + + ; the 

material constants 1 2 nB b b σ= + ; 1b and 2b  are the material constants. 

 
3. Examples of Numerical Calculation 
 
All analyses of numerical examples conducted with the VCFEM codes are executed under plane 
stress assumptions. 
 
3.1. Simulation of the Damage in Complex Microstructure 
 
In the first example, a structure consists of 20 elliptical inclusions with different size (see Fig. 2a). 
The inclusions are arranged randomly in a square matrix of 10×10 mm2 and the matrix-inclusion 
interface of every inclusion is composed of 8 sides, in which no side is debonded before loading. 
The fatigue crack will initiate and propagate gradually where the total fatigue damage of the 
interfacial points is greater than the given critical fatigue damage. The vertical displacement on the 
top edge and the bottom edge and the horizontal displacement on the left edge are fixed, and the 
displacement controlled fatigue loads are applied on the right edge with the maximal displacement 

67 10−× mm and the minimal displacement 77 10−× mm.  

                     
Figure 2. (a) The crack propagation status in a square particulate reinforced composites plate with 20 circle 
inclusions; (b) the horizontal stress component contours within the matrix and inclusion of VCFEM model 

 
Material properties are as follows:  
Matrix(Al2024): Young's Modulus 72AlE GPa= , Poisson's Ratio Al 0.33v = ; 
Inclusions(SiC): Young's Modulus SiC 430E GPa= , Poisson's Ratio SiC 0.25v = ; 

The given critical fatigue damage c=1 and the material constant β =6，m =1. 

In every VCFEM element the stress field in the matrix is represented by a 75 terms expansion 
composed of 42 polynomial terms (8th order complete polynomial expansion of the Airy function) 
and 33 reciprocal terms (1 reciprocal terms for each exponent in the polynomial terms, from 2 to 7) 
While the stress field in the inclusions is modeled using only the first 63 polynomial terms. The 
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fatigue crack propagation status is shown in Fig. 2(a), and the distribution of the horizontal stress 
component xσ  calculated by the VCFEM model is showed in Fig. 2(b), when fatigue cycles 
are 58 10× . It appears that the VCFEM model has considerable accuracy and high efficiency in 
dealing with the initiation and propagation of the fatigue crack of Particle-reinforced metal-matrix 
composites. 
3.2. The Study of the Behaviour of a Functionally Graded Material 
In the second example, the fatigue crack evolution in the SiC/Al functionally gradient material are 
simulated with the different volume fraction ratio of SiC of 25%, 40%, 55%, 70%, in which the 
specific distribution is shown in  Fig. 3(a) and the specify voronoi tessellation mesh of 
functionally gradient materials is shown in  Fig. 3(b). 

 
Figure 3. (a) section schematic of SiC/Al functionally gradient materials;  

(b) Voronoi tessellation mesh of FGMS 
In this model, the Al is Al2024-T6 with the elastic modulus EAl = 72GPa; the Poisson's ratio V Al = 
0.33; the yield stress was 70MPa; tangent modulus E t = 14.5GPa; followed J2 flow theory; SiC is 
with the elastic modulus ESiC = 430GPa; Poisson's ratio VSiC = 0.25; the yield stress of SiC 100MPa; 
tangent modulus 50GPa. The width of the specimen is 4mm; the thickness is 8mm, each gradient 
layer thickness is 2mm. About 4700 inclusions were modeled, the boundary conditions of the model 
were constrained as follows: the right hands of this specimen were constrained in Ux, Uy directions, 
and the left hands of the specimen were enforced 0.001 uniform displacement. The critical normal 
stress leading interfacial crack is 30MPa. In order to evaluate the influence of the interface cracks, a 
comparison with the model which does not take the interface cracks into consideration was made. 
The curve of displacement and reaction force was shown in Fig. 4. 

  
Figure 4. (a) curves of displacement and reaction force;  

(b) The effect of interface bond strength 
In Fig. 4(a), the results show that the overall stiffness of functionally gradient materials is gradually 
reduced when the interfaces are cracked. Compared with the model which does not take the 
interface cracks into consideration the overall stiffness is reduced largely. In Fig. 4(b), the results 
show that the overall stiffness of the specimen is increasing with the enhancement of interface bond 
strength. In this test, we can see that when the interface bond strength is between 10-35MPa the 
overall stiffness of the specimen is increased slowly or can't even reach the yield strength. In this 
case the SiC particles are a kind of damage to the Al matrixes, because they cannot work together 

70%SiC+30%Al 

55%SiC+45%Al 

40%SiC+60%Al 
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perfectly. With interface bond strength increasing for example between 35-70MPa, the overall 
stiffness of the specimen is increased obviously. And the yield strength is higher than 90MPa. So in 
this situation the spacemen can work very well. And the gradient performance of the functionally 
gradient materials is not obviously affected by the interfacial crack. 
 
4. Conclusion 
 
In this study, the modeling of fatigue crack initiation and propagation for particulate reinforced 
composites is facilitated with new Voronoi Cell Finite Element Method (VCFEM), considering the 
matrix-inclusion interfacial fatigue cracks, matrix fatigue cracks and crack closures. In the new 
element, all possible contacts on the crack edge is considered by contact seeking and remeshing 
methods, when the crack is closing under all possible changing loads. The fatigue crack initiates 
when the fatigue damage exceeds certain critical damage value, and fatigue crack propagation are 
simulated by gradual seeking crack propagating directions and new crack tips in a remeshing 
method.  
The second example of Particle-reinforced metal-matrix composites with 20 elliptical inclusions 
shows that the VCFEM has considerable accuracy and high efficiency in dealing with the initiation 
and propagation of the fatigue crack. Good agreements are obtained between the results of VCFEM 
and the general finite element method, not given in this paper. 
This kind of VCFEM method can predict functionally gradient material particles’ interfacial crack 
accurately. The particles’ size, topological structure, and interfacial deboning strength will influence 
FMES’ mechanical behavior. With the interface cracking the overall stiffness of functionally 
gradient materials is gradually reduced. 
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