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Abstract Hierarchical ramification structures are found of superior strength during fracture. Crack propaga-
tion along cohesive zone model binding with hierarchical ramification structures is simulated to analyze the
fracture process. The feature of specified bonding surface results special pattern of crack propagation. There-
for, the potential that by changing the morphology of the bonding surface may control the toughness of the
material is illustrated.
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1. Introduction

Some biological materials have the internal structures that exhibit superior performances in mechan-
ical properties[1]. There are quite a few studies to investigate the fundamental mechanism of the
biological systems in order to develop the artificial bio inspired materials. In this study, we focus on
the the hierarchical ramification structures that contribute to high fracture toughness. The hierarchical
ramification structures are often observed in many biological system. The structures appear as fractal
geometries which are generated naturally via quite simple rules and they contribute to redundancy for
safety of their life.

In this study, the cohesive zone model is adopted to a hierarchical structured interface and the crack
propagation on the interface is studied.

First, the problem of double cantilever beam problem is solved to estimate the fundamental effect of
the microstructure of interface. According to the simple calculation, it is shown that the redundancy
of ramification structure yields high fracture toughness.

Secondly, the quasi-static crack propagation is studied in bulk materials. The small scale yielding
condition is assumed and the linear elastic solution specifies the boundary displacement component.
The boundary value problem in linear elasticity is solved for increasing remote stress intensity fac-
tor by using finite element method. The displacement field and stress distribution obtained by the
simulation is discussed to study the mechanism of crack propagation. The relationships between the
remote stress intensity factor and representative crack length are plotted for several cases of different
microstructures. The effective interface area and the effective surface energy depends on the internal
microstructure of interface. The effect of geometry cause the complex pattern of bonding-debonding
domain. As the result, the representative length scale of fracture process zone depends on the het-
erogeneity and morphology of microscopic structure. The fracture toughness which is estimated as a
remote stress intensity factor changes associated with the change of the fracture process zone due to
the microstructure.
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2. Theory

2.1. Cohesive Zone Model

Cohesive zone model is frequently used to analyze crack propagation. In this modeling, a cohesive
zone is placed between bulk elements as shown in Fig.1. Fracture can be regarded as elements sep-
arating along the cohesive surface resisted by cohesive traction[2][3]. As the separation occurs, the
traction increases to a maximum and then falls back to 0. The procedure means the element separates
completely, and the area under the traction-separation curve corresponds with the effective surface
energy that needed for complete separation.

Figure 1. Cohesive zone model placed between bulk elements

2.2. Cohesive Zone Law

The traction vector T = (Tn,Tt) can be derived from the effective surface energy φ(∆).(E.g.[4][5])

T = −∂φ(∆)
∂(∆)

(1)

where ∆ = (∆n,∆t). The components Tn, Tt and ∆n, ∆t are the normal and tangential components of
traction vector and relative displacement vector, respectively.

The surface energy [4] can be written as:
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where δn and δt represent the character length that satisfy Tn(δn) = σmax, Tt(δt/
√

2) = τmax. Stress
σmax and τmax represent the maximum of normal traction and tangential traction, respectively. Pame-
ters are defined as q = φt/φn, r = ∆′n/δn, where ∆′n represents the value of ∆n when Tn = 0. φn and
φt are the areas under the normal traction-separation curve and the shear traction-separation curve
representing the surface energy for complete separation respectively and can be calculated as:

φn = σmax exp(1)δn, φt =
√

exp(1)/2τmaxδt (3)

From Eqs.(1) and (2),the normal and shear traction can be obtained:
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2.3. Frame element

Frame element is the combination of truss element which represents axial tension and beam element
that represents bending (E.g. [6]). Consider the frame element shown in Fig. 2, the element nodal

Figure 2. Image of frame element

displacement vector dFrame and the vector of element nodal loads FFrame are set as:(
dFrame

)T
=

(
ui vi θi u j v j θ j

)T
(6)(

FFrame

)T
=

(
Pi Qi Mi P j Q j M j

)T
(7)

As shown in Fig. 2, u, v, and θ are the x-direction displacement, y-direction displacement and de-
flection angle, respectively. P, Q, and M represent the x-direction load, y-direction load and bending
moment, respectively. The stiff equation of frame element can be expressed as:(

FFrame

)
=

(
kFrame

) (
dFrame

)
(8)

where [kFrame] represents the element stiff matrix of the frame element of x-direction. Furthermore, if
we set the length, area of cross section, Young’s modulus and moment of inertial of area as l, A, E, I,
then consider the frame element that inclined at the degree of β to the x-direction.

By coordinate transformation, the stiff equation of the frame element of any direction can be obtained:
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(9)
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Where the components can be represented as:
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4EI

l
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2EI

l

F =
AE
l

cos2 β +
12EI

l3 sin2 β

G =
AE
l

sin β cos β − 12EI
l3 sin β cos β

H = −6EI
l2 sin β

U =
AE
l

sin2 β +
12EI

l3 cos2 β

V =
6EI
l2 cos β

2.4. Energy Release Rate

With the propagation of crack, it is found the surface energy decreases to form new crack surface.
Using the stress intensity factor KI , the potential energy release rate G can be calculated as:

G = 1 − ν2

E
K2

I . (10)

When considering about double cantilever beam, with the Young’s modulus of E,and the moment
of inertial of area as I, and the bending moment M acting on the free edge of the beam, the energy
release rate can be calculated as:

G = M2

2EI
(11)

3. Analysis Model and Analysis method

3.1. Discrete Cohesive Zone Model

Consider a linear elastic solid in Fig. 3 with Young’s modulus of E and Poisson’s ratio of ν and
established with cohesive zone model in Fig. 4(a). Fig. 4(b) shows the general continuously cohesive
zone model, while Fig. 4(c) is the discrete cohesive zone model on the basis of Fig. 4(b) with periodic
characteristic length of l. In the periodic structure, set the cohesive zone model with the length of
b,and make the last l − b of debonding area. Also in this study, we set b = 1/2l. The small scale
yielding condition is assumed and the boundary condition is set with a displacement field of KI = K̇It
with K̇I = 50GPa

√
m/s. Using the discrete cohesive model,crack propagation is studied.

With the Griffith theory, fracture toughness KIC can be evaluated with surface energy Γ as:

KIC =

√
EΓ

1 − ν2 (12)
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Figure 3. Schematics of problem Figure 4. Detail of Cohesive zone

And here for general continuously cohesive zone model, Γ = φn. So with b = 1/2l, the discrete
cohesive zone model has the surface energy of 1/2φn and the stress intensity factor can be obtained
as KI =

√
1/2KIC.

3.2. Microscopic Structure with Cohesive Zone Model

Microscopic structures with different mythologies show unique feature of strength. Consider two
patterns of structures made of frame elements bound with cohesive zone shown in Fig.5 and Fig.6,
set the y-direction displacement and simulate the separation of the element.

Figure 5. Unit Discrete Structure Figure 6. Unit Hierarchical Structure

The bottom of the structures are bound with cohesive zone model, when separation happens, the
traction-time curve can be shown as Fig.7
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Figure 7. Force-displacement relations of microsopic structures

With the feature talked above, by using the model of continuous cohesive zone model, continuous
microscopic structures can be obtained. As shown in Fig. 8, cohesive zone is replaced by structures.
All the structures are binding with cohesive zone models at the end of the elements, and the angular
velocity at the free edge is set as ω = 5 × 10−7rads/s.

(a) Continuous Structure with cohesive zone model

(b) Discrete Structure with cohesive
zone model

(c) Hierarchical ramification struc-
ture with cohesive zone model

Figure 8. Schematics of pealing problem of canti-lever

4. Analysis Result

4.1. Discrete Cohesive Model

The fracture toughness of the general continuously cohesive zone model can be calculated as K∗IC =
0.358MPa

√
m, therefor the theoretical value of the stress intensity factor will be KIC =

√
1/2K∗IC.
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Using discrete cohesive zone model and general continuously cohesive zone model to simulate the
crack propagation and comparing the stress intensity factor as shown in Fig.9
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Figure 9. The stress intensity factor of discrete cohesive zone model of different characteristic lengths
comparing with the theoretical value

Figure 9 shows the result of different characteristic lengths. The strength of the material increases
with the characteristic length. Also, the stress intensity factors of discrete cohesive zone models are
all above the one of general continuously cohesive zone model. Therefore, the possibility that the
interface morphology of cohesive zone has an impact on the strength of material is illustrated.

4.2. Microscopic Structure with cohesive zone model

The average potential energy to make a new fracture surface can be calculated as φ∗n = φn/∆d =
1.28×10−10J/m. Using this data, the theoretical moment in proportion to strength of the bulk material
can be obtained as K∗ =

√
φ∗nEI = 9.55 × 10−13Nm.

By using simulation, the simulate data of the strength of structures with cohesive zone model and the
deformation can be obtained.

As shown in Fig.10, the strength of discrete structure exceeds the one of hierarchical structure at
first and is reversed during the crack propagation . When crack propagates, the strength of discrete
structure turns constant while the one of hierarchical structure shows several jump which represents
the thorough separation of unit structures. Although theoretical result overwhelms simulation results,
since the result of hierarchical structure increases during element separation, the strength of hierar-
chical structure shows more resistance to crack propagation.

When the strength of hierarchical structure jumps as shown in Fig.12, crack propagation occurs. From
the deformed hierarchical structure graph, the details of crack propagation can be illustrated.

Figures 13(a)- (h) show the details of crack propagation and element separation. The upper graphs
represent the total image of deformed structures while the lower ones represent the enlarged view
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Figure 10. Strength of different models
Figure 11. Deformed Microscopic Structures
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Figure 12. Separations on cohesive zone during crack propagation

of the cohesive zone. When first jump happens in Fig.12 at (1) and (2), the first unit hierarchical
structure separates completely and crack propagates as in Fig. 13(a) and Fig. 13(b). The second jump
at (3) and (4) corresponds to Fig. 13(c) and Fig. 13(d), half of the unit structure separates while the
other half parts contains both bonding and separated elements. This half parts completely separates at
(5) and (6) shows in Fig12 without jumps.After the first two unit structures separate completely, the
third one begin to separates at (7) and at (8) half of the unit structure thoroughly separates.

The hierarchical structure separates at a certain distributive way. Due to the special feature of hierar-
chical structure, the elements do not separate in regular order. Instead, after the initial separation, the
element separates next shifts in one structure.

After all the elements separate in one structure, the crack propagation happens. While for discrete
structure, the elements separate in the regular order, after the first separation happens, the elements
next separates sequentially. Discrete structure may be destroyed quickly after the first element sepa-
ration, while hierarchical structure can suffer more due to its special separating feature.
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Figure 13. Deformed Hierarchical Structure
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5. Conclusions

The strength of the material has been evaluated via simulation of discrete cohesive zone model and
microscopic structures bound with cohesive zone model. By changing the morphology of the inter-
face, sophisticated design of the strength and the properties of crack propagation of material will be
possible.
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