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Abstract   
Free edge effect of laminated plates has been extensively investigated in the past two decades. Due to the 
boundary condition limitation, very limited work on piezoelectric laminated plates with free edges was 
carried out. In this paper, coupled and uncoupled analytical analyses on the interlaminar stresses in the 
vicinity of the free edges of piezoelectric laminated plates are presented on the basis of three-dimensional 
elasticity and piezoelectricity. The state space equations for cross-ply piezoelectric laminates subjected to 
uniaxial extension are obtained by considering all independent elastic and piezoelectric constants. The 
equations satisfy the boundary conditions at free edges and the continuity conditions across the interfaces 
between plies of the laminates. Three dimensional exact solution is sought and validated by comparing 
present numerical results with those of existing approximate analytical and finite element models. The 
singularity of the interlaminar stresses near the free edges is confirmed and the electromechanical coupling 
effects give much higher interlaminar stresses at the free edges in comparison with those of the 
corresponding uncoupled cases. 
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1. Introduction 
 
In recent decades, composite materials have extensive popularity in high-performance products that 
demand for high-strength, lightweight among many fields. Due to the development of 
multifunctional structures, smart materials and structures, which can perform sensing, controlling, 
actuating with distinct direct and converse piezoelectric effects, are widely used in many 
applications such as structural vibration control, precision positioning, aerospace and 
nanotechnology. Piezoelectric structures are often made from multi-layered thin films of dissimilar 
materials in the forms of stacks. For example, a piezoelectric laminated plate with simply-supported 
conditions, as a multilayer stack, was investigated by many researchers such as Heyliger [1], Lee 
and Jiang [2], Cheng et al. [3] and Xu et al. [4]. Sheng et al. [5] presented state space solution for 
laminated piezoelectric plate with clamped and electric open-circuited boundary conditions.     
 
It is well-established that due to the discontinuity of material properties at the interfaces, a highly 
concentrated interlaminar stress field can occur in the vicinity of the free edges which will lead to 
interlaminar failures such as delamination or matrix cracking. Pipes and Pagano [6] presented a 3D 
elastic solution for the free-edge effect for a symmetric laminate strip under uniaxial tension. By 
using Lekhnitskii’s [7] stress potential as well as the eigenfunction technique, Wang and Choi [8] 
investigated the stress singularities at the free edge of laminated plate. Becker [9] presented a 
closed-form solution by introducing a particular warp deformation which decays rapidly towards 
the laminate interior to reflect the free edge effect. Most recently, analytical solutions were 
developed by Tahani and Nosier [10] within Reddy’s layerwise theory (LWT) to investigate the free 
edge effect problem of general cross-ply laminates with finite dimensions under uniform axial 
extension. Recently Zhang et al. [11] give the 3D analytical solution for the free edge cracking 
effect in composite laminates under extension and thermal loading by using state space method.  
 
Due to the piezoelectric coupling effects in piezoelectric laminated plate, the mechanical and 
electrical behavior becomes more complex. Thus an accurate determination of coupling effect on 
free edge interlaminar stresses and deformation is essential in the design of elastic and piezoelectric 
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structure. By using Fourier transforms to reduce electro-elastic boundary value problem to the 
solutions of integral equations, Ye and He [12] solved the problem of electric field concentrations of 
a pair of parallel electrodes arrayed in one plane. Finite element method was chosen to show the 
effect of piezoelectric coupling on interlaminar stresses and electric field strengths near the free 
edge by Artel and Becker [13]. In addition, an analytical solution was also developed to determine 
the state variables of piezoelectric elasticity in the vicinity of free edges using a layerwise 
displacement theory by Mirzababaee and Tahani [14]. 
 
In this paper, on the basis of 3D elasticity and piezoelectricity, an exact analytical solution that 
satisfies both mechanical and electric boundary conditions is established by considering continuity 
of displacements, transverse stresses, electric potentials and vertical electric displacements across 
interfaces between different materials.  
 
2. Fundamental State Space Method Formulation 
 
2.1. State space equations for cross-ply piezoelectric plate 
 

 
Figure 1. Geometry of a piezoelectric laminated plate 

 
The rectangular piezoelectric laminated plate is subjected to a uniform constant axial strain ε0 and it 
is assumed to have length a, width b, and uniform thickness h (Fig. 1). The principle elastic 
directions of plate coincide with the axes of the chosen rectangular coordinate system and full 
coupled three-dimensional piezoelectric-elastic constitutive relations of orthotropic piezoelectric 
lamina are given  

                                                           { } [ ]{ } [ ] { } ,TC e Eσ ε= −                                                          (1)                  

                                                           { } [ ]{ } [ ]{ } ,D e Eε= + ∈                                                             (2) 
Where {σ}, {ε}, {E} and {D} are, respectively, stress, strain, electric field, and electric 
displacement vectors. [C], [e] and [є] are elastic, piezoelectric and electric permittivity constants, 
respectively.  Explicit forms of Eqs. (1) and (2) are given as follows: 
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Due to the uniform extension ε0 and infinite length in the x direction, the state variables are 
independent from the longitudinal coordinate x, therefore, the linear strain-displacement relations of 
elasticity and the components of electric field vector can be written as 
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Where u, v and w represent displacements in the x, y and z directions, respectively. 
 
Gaussian law and stress equilibrium equations of the elastic body are given below 
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By considering Eqs. (3)-(6) and assuming the electrical body charge q as well as body forces fi to be 
zero, we can get τxz = 0, τxy = 0, Dx = 0 and other 9 state variables v, w, σx, σy, σz, τyz, Dy, Dz, φ. They 
are all independent of x, and can be expressed as v(y,z), w(y,z), σy(y,z), σz(y,z), τyz(y,z), Dy(y,z), 
Dz(y,z), and φ(y,z). After a lengthy derivation process based on Eqs. (3)-(6) the following first-order 
partial differential equations are obtained:                             

                                                             
{ } [ ]{ } { } ,R A R B

z
∂

= +
∂                                                          

(7) 
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The following in-plane stresses and electric displacements are also obtained: 
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Assuming that the displacements v can be expressed as: 

                                                 
(0) 2( , ) ( , ) ( ) (1 ),yv y z v y z v z

b
= + ⋅ −

                                                   
(11) 

Where v(0)(z) is the unknown boundary displacement function that can be determined by imposing 
traction free conditions and open-circuit conditions on the free edges. The following Fourier series 
expansions are used: 
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Where η = nπ/b, since a uniformly distributed extension is applied, displacement v is zero at y = b/2.                   
 
By introducing Eqs. (11)-(13) into Eq. (7) the following non-homogeneous state space equation for 
an arbitrary value of n is obtained: 
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The solution of non-homogeneous state space equation in Eq. (14) can be obtained as 
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Where [Gn(z)] is called transfer matrix and {Hn(z)} is non-homogeneous vector. 
 
Consider the piezoelectric laminated plate consists of N different plies and suppose a ply is 
composed of K fictitious sub-layers. It is assumed that thickness of all the fictitious sub-layers 
approaches zero uniformly as K is sufficient large. In addition different plies may have different 
materials, which leads to in-plane stresses discontinuity at the interface. For an arbitrary sub-layer j 
in ith ply, we can establish its state equation:  

                                   
{ } [ ] { } { }, , ,,

( ) ( ) (0) ( )n i n i n n ii j i j i ji j
R z G z R H z= + , [0, ]i iz d∈                            (16) 

 
The non-homogeneous vector {Hn(zi)}i,j from above equation contains unknown boundary functions 
and their derivatives. As discussed before, we divide ith ply into Kj thin sub-layers. The thickness of 
each sub-layers is di = hi/ki. If the fictitious sub-layer is sufficiently thin, it is reasonable to assume 
that the unknown functions are linearly distributed within the thin layers in the z-direction: 
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Where ,
t
i jv , ,

b
i jv  are the end values of (0)

, ( )i jv z  at the top and bottom surfaces of the jth thin sub-layers,  
respectively.  
 
By imposing continuity conditions at the interface of adjacent sub-layers {Rn(di)}i,j = {Rn(0)}i,j+1 
and adjacent plies {Rn(hi)}i  = {Rn(0)}i+1, we can obtain the relationship between the state variables 
of the bottom and top surfaces of the plate as follows 
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{ } [ ]{ } { }( ) (0) ,n N nR h R= Π + Π

                                                  
(18) 

Where {Rn(0)} and {Rn(hN)} are the state vectors of top and bottom surfaces of the plate, 
respectively, and [ ]Π  is the state transfer matrix. The non-homogeneous vector { }Π  contains 

1 2 1NK K K+ + ⋅⋅⋅+ + boundary unknown coefficients ,
t
i jv , ,

b
i jv which can be determined by 

mechanical and electric boundary conditions at the free and electric open-circuited edges.   
 
2.2. Boundary conditions of cross-ply piezoelectric plate 
 
For an electric load free surface, open-circuited and traction-free conditions are considered, the top 
and bottom surface conditions are obtained: 
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The plate has free edges and electrical open-circuited conditions at y = 0, y = b as follows: 

                                                             0,y xy zy yDσ τ τ= = = =                                                         (20) 
where τxy = 0, τzy = 0, Dy = 0 are satisfied automatically. The remaining boundary condition to be 
satisfied is σy = 0. Due to symmetry, we only impose the condition at y = 0, and substitute the 
second equation of Eq. (9) into the first expression of Eq. (20) yields 
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The following algebra equation system can be obtained by introducing Eqs. (18) and (19) and 
eventually the  boundary unknown constants can be determined by considering Eqs. (21) and (22).  
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3. Numerical examples and results 
 
To validate the present method, numerical examples are presented for symmetric cross-ply 
piezoelectric laminated plates and comparisons are made between the current solution and work 
done by Artel and Becker [13], and Mirzababaee and Tahani [14]. The free-edge effect in the 
laminated plate with and without electromechanical coupling is investigated and two laminated 
layups [0 / 90 ]s

o o and [90 / 0 ]s
o o are considered. The material properties are given in Table 1 which 

comprises the mechanical properties of a T300/Epoxy and the piezoelectric and electrical properties 
of a PZT-5A. The uniaxial extension ε0 is 0.1% and the width b is ten times larger than the thickness 
h, in addition, the thickness of each ply in the laminate is identical.  
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Table 1. Mechanical and electrical properties of the piezoelectric plate 
Elastic Stiffness  

(GPa) 
Piezoelectric Coefficients 

(C/m2) 
Dielectric Properties  

(C2/(Jm)) 

C11=137 e31=e32=-5.4 є11=є22=1730є0 
C12=C13=3.75 e33=15.8 є33=1700є0 

C22=C33=10.9 e24=e15=12.3 є0=8.859×10-12 
C23=3        
C44=3.97        
C55=C66=5         

 
Distributions of stresses and electric field strength components at the [0 / 90 ]o o interface in a 
[0 / 90 ]s

o o laminate and at the [90 / 0 ]o o interface in a [90 / 0 ]s
o o laminate are presented for the 

electromechanical uncoupled and coupled cases. From Fig. 2 it is very clear that interlaminar 
normal stress σz shows a possible singular behavior in the vicinity of free edge and ascends to a 
finite value at the free edge for both cases. For the coupled electric and mechanical circumstance, 
there is a good agreement between present results and those of Artel and Becker [13], and 
Mirzababaee and Tahani [14]. In addition, the values of coupled one are approximately two times 
larger than those of uncoupled one in the present results.     
 

 
                                    (a) [0 / 90 ]s

o o
                                                                   (b) [90 / 0 ]s

o o  
Figure 2. Distributions of interlaminar normal stress zσ   

 
The variations of interlaminar normal stress σz at the interfaces through thickness at the free edges 
are depicted in Fig. 3. It is shown that the present uncoupled results have good agreement with 
those of Mirzababaee and Tahani [14] and the present coupled results have decent agreement with 
those of Mirzababaee and Tahani [14]. However, neither of above results for uncoupled and coupled 
is in good agreement with those of Artel and Becker [13], especially at the interfaces between 
different material plies. From Fig. 3 it is seen that the values of present coupled results are also 
approximately two times larger than those of present uncoupled results quantitatively.   
 



13th International Conference on Fracture 
June 16–21, 2013, Beijing, China 

-8- 
 

 
(a) [0 / 90 ]s

o o
                                                                   (b) [90 / 0 ]s

o o  
Figure 3. Through thickness variations of interlaminar normal stress zσ   

 
The variations of interlaminar stress τyz for uncoupled and coupled ones are shown in Fig. 4. The 
present results agree well with those of Artel and Becker [13], and Mirzababaee and Tahani [14] 
near the free edge. The value of τyz changes abruptly near the free edge at the interface and descends 
to zero at the free edge. In contrast to present results, those of Artel and Becker [13], and 
Mirzababaee and Tahani [14] cannot satisfy the traction free condition along free edges. Present 
results shows that interlaminar stress gradient occurs near the free edge due to the dissimilar 
properties of adjacent plies and coupled stresses are larger than those of uncoupled.    
 

  
(a) [0 / 90 ]s

o o
                                                                   (b) [90 / 0 ]s

o o  
Figure 4. Distributions of interlaminar shear stress yzτ   

 
Electrical quantities gradient may also occur in the vicinity of free edge at interfaces. The electric 
field component Ey changes dramatically near the free edge and vanishes at the free edge. Moreover, 
another electric field component Ez becomes singular at the free edge. In addition, it is worth to 
mention that present results disagreed with those of Artel and Becker [13], and Mirzababaee and 
Tahani [14] in magnitude.  



13th International Conference on Fracture 
June 16–21, 2013, Beijing, China 

-9- 
 

 
(a) [0 / 90 ]s

o o
                                                                   (b) [90 / 0 ]s

o o  
Figure 5. Distributions of electric field strength components iE  

 
On the basis of comparative analyses in this section, it is seen that the results of Artel and Becker 
[13], and Mirzababaee and Tahani [14] violate traction free boundary conditions at free edges. 
Furthermore, the FEM solution from Artel and Becker [13] fails to guarantee the continuity of 
transverse normal stress at interface of two different materials, deficiencies mentioned above were 
overcome by present solution. Both the stress and electric field strength singularities were observed 
with suitable layer refinement in z-direction. 
 
4. Conclusions 
 
State space method for an analytical solution has been developed to investigate the coupling effect 
on piezoelectric laminated plates and the singularities in the vicinity of free edges. Cross-ply 
laminated plates with and without electromechanical coupling subjected to uniform axial strain have 
been studied. To validate this method, comparisons were made between present results and those of 
other analytical and FEM solutions in the literature.  
 
By satisfying all the mechanical and electric boundary conditions, especially tractions free 
conditions at free edges, and guaranteeing the continuity of transverse stresses and electric 
quantities across the interfaces between different material plies, the solutions show a significant 
piezoelectric effect on the laminated plate near the free edges and interlaminar stresses increase 
magnificently in coupled circumstance compared with those of uncoupled.             
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