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Abstract  This paper first introduces an expanded tensor notation to express the basic relations of 
magneto-electro-elastic (MEE) media and then, derives a domain formulation of the interaction integral on 
the basis of the expanded tensor notation for computing the intensity factors (IFs). The present interaction 
integral does not require material properties to be differentiable and moreover, it is domain-independent for 
material interfaces, which may make the interaction integral to become one of the most promising techniques 
in analyzing the crack problems of MEE composites. Then, the numerical implementation of the interaction 
integral combined with the extended finite element method (XFEM) is introduced. Using this method, the 
crack problems of a particulate MEE plate are studied.  
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1. Introduction 
 
Magneto-electro-elastic (MEE) materials have drawn significant interest in several engineering 
fields as a class of important functional materials, such as magnetic field probes, electronic 
packaging, actuators, waveguides, sensors, phase investors, transducers. However, a great drawback 
of MEE materials is their inherent brittleness and low fracture toughness. Generally, these materials 
may fail prematurely in service due to some defects arising during the manufacturing process and 
thus, it is of practical significance to learn the fracture feature of MEE materials. Liu et al. [1] 
studied Green's functions for a cracked MEE body. Wang and Mai [2] obtained a general 
two-dimensional (2D) solution of the MEE fields around the crack tip. Gao et al. [3] derived an 
explicit solution in closed form for the intensity factors (IFs) and electro-magnetic fields inside a 
crack in MEE media. After that, considerable theoretical research works were carried out on the 
fracture problems of MEE materials. However, most of the theoretical research works restrict MEE 
media to be infinite and only a few simple configurations can be solved. Therefore, numerical 
techniques are usually employed in actual fracture analyses of MEE materials.  
 
Among numerical methods, the interaction integral has generated a great interest for its convenience 
in decoupling mechanical stress intensity factors (SIFs), electric displacement intensity factor 
(EDIF) and magnetic induction intensity factor (MIIF). The interaction integral was proposed by 
Stern et al. [4] to decouple mechanical mode-I and mode-II SIFs on the basis of the J-integral by a 
superposition of two admissible states. Recently, the interaction integral was extended to solve the 
IFs of piezoelectric (PE) media [5] and those of MEE media [6]. For MEE materials, the interaction 
integral published previously has a shortcoming that is it requires the material properties to be 
differentiable. Generally, MEE materials are a category of composites composed of PE and PM 
phases, and the interfaces between constituent phases may reduce their reliability since the 
interfaces generally act as sources of failures in service. Therefore, the interfaces can not be ignored 
when the fracture behaviors of MEE composites are concerned. Fortunately, Yu et al. [7] have 
developed a new interaction integral for PE solids which is domain-independent for material 
interfaces. This point brings a great convenience to the fracture analysis of the composites with 
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complex interfaces. Then, this paper will derive a domain-independent interaction integral for MEE 
composites. 
 
2. Basic relations and interaction integral  
 
2.1. Basic equations for PE media 
 
The field equations for a linear MEE medium in the absence of body forces, volume charge and 
concentrated magnetic source are given as follows. 
 
2.1.1. Governing equations 
 
 Constitutive equations 

 
ij ijkl kl lij l lij l

i ikl kl il l il l

i ikl kl il l il l

C e E h H

D e E H
B h E H

σ ε

ε κ β
ε β γ

= − −

= + +
= + +

, (1) 

 Kinematic equations 

 , , , ,
1 ( ), ,
2ij i j j i i i i iu u E Hε φ ϕ= + = − = − . (2) 

 Equilibrium equations 
 , , ,0, 0, 0ij i i i i iD Bσ = = = . (3) 
where iu , ijσ  and ijε  are the elastic displacement, stress, strain tensors, respectively; φ , iD  
and iE  are the electric potential, electric displacement, electric field tensors, respectively; ϕ , iB  
and iH  are magnetic potential, magnetic induction, magnetic field tensors, respectively; ijklC , ilκ , 
and ilγ  are the elastic stiffness, dielectric permittivity and magnetic permeability tensors, 
respectively; ikle , iklh  and ilβ  are the PE, PM and electro-magnetic tensors, respectively. The 
repetition of an index implies summation with respect to the index over its range. 
 
2.1.2. Expanded tensor notation 
 
By letting  
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. (5) 

we can extend the tensors iu , ijσ , ijε  and ijklC  ( , , , 1,2,3i j k l = ) respectively into Iu , IJσ , IJε  
and IJKLC  ( , , , 1,2,...,5I J K L = ) which meet the symmetry relations  IJ JIσ σ= , IJ JIε ε=  and 

IJKL JIKL IJLK KLIJC C C C= = = . Here, the subscripts , , , 4,5i j k l′ ′ ′ ′ = . A Cartesian coordinate system 
only contains 1x -axis and 2x -axis and thus,  
 4 5 ,4 ,50, (*) (*) 0n n= = = = . (6) 
where (*)  denotes an arbitrary variable or expression. According to the above relations, Eqs. (1)



13th International Conference on Fracture 
June 16–21, 2013, Beijing, China 

-3- 
 

-(3) can be expressed in an expanded tensor notation respectively as  
 IJ IJKL KLCσ ε= , (7) 

 , ,
1 ( )
2IJ I J J Iu uε = + , (8) 

 , 0IJ Iσ = . (9) 
 
2.2. Definition of the interaction integral  
 
2.2.1. Interaction integral  
 
A 2D linear MEE solid with an electrically and magnetically impermeable crack is considered. The 
interaction integral is the 'cross term' in the J-integral by superimposing the actual fields ( Iu , IJσ , 

IJε ) and some known auxiliary fields ( aux
Iu , aux

IJσ , aux
IJε ). As shown in Fig. 1, the J-integral for 

MEE media is [2] 
 1 ,1 ,1 ,10

lim ( )i ij j i i iJ F u D B n d
εε

δ σ φ ϕ
ΓΓ →

= − − − Γ∫ . (10) 

where ( ) / 2jk jk j j j jF D E B Hσ ε= − −  is the electro-magnetic enthalpy density for linear MEE 
media, ijδ  is Kronecker delta and in  is the unit outward normal vector to the contour εΓ . 
According to Section 2.1.2, the J-integral can also be expressed as  

 1 ,10

1lim ( )
2 JK JK I IJ J IJ u n d

εε

σ ε δ σ
ΓΓ →

= − Γ∫ . (11) 

Superposition of an actual state and a auxiliary state leads to another equilibrium state (state S ) for 
which the J-integral is  

 ( )
1 ,1 ,10

1lim [ ( )( ) ( )( )]
2

S aux aux aux aux
JK JK JK JK I IJ IJ J J IJ u u n d

εε

σ σ ε ε δ σ σ
ΓΓ →

= + + − + + Γ∫ . (12) 

By expanding Eq. (12) as ( )S auxJ J J I= + +  where J  and auxJ  are respectively the J-integral 
corresponding to the actual state alone and the auxiliary state alone, one obtains the interaction 
integral as  

 1 ,1 ,10

1lim [ ( ) ( )]
2

aux aux aux aux
JK JK JK JK I IJ J IJ J II u u n d

εε

σ ε σ ε δ σ σ
ΓΓ →

= + − + Γ∫ . (13) 

 

 
Figure 1. Integral contours around the crack tip 

 
2.2.2. Auxiliary fields  
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For nonhomogeneous MEE materials, the auxiliary fields have different choices [6] and an 
incompatibility formulation is selected in this paper. Namely, in the polar coordinate system ( , )r θ  
with the origin at the crack tip, the expanded auxiliary fields are defined as  

 12 ( ), ( ), ( )
2

aux
aux aux N aux N aux auxN
J N J IJ IJ IJ IJKL KL

r Ku K f g C
r

θ σ θ ε σ
π π

−= = = x  (14) 

where the index { ,  ,  ,  ,  }N II I III IV V=  denotes different crack opening modes with the value 
corresponding to a general subscript {1,  2,  3,  4,  5}I = ; aux

IK , aux
IIK , aux

IIIK , aux
IVK  and aux

VK  
denote the auxiliary mode-I, mode-II, mode-III mechanical SIFs, EDIF and MIIF, respectively. The 
angular functions ( )N

Jf θ  and ( )N
IJg θ  are the standard angular functions for a crack in a 

homogeneous MEE medium, which depend only on the material properties at the crack-tip location, 
and their detailed definitions can be found in Ref. [6]. 
 
2.3. Calculations of the interaction integral 
 
The infinitesimal contour integral in Eq. (13) can not be obtained directly in numerical calculations 
and thus, it is usually converted into an equivalent domain integral. To begin, as shown in Fig. 1, 
consider a closed contour 0 B C Cε

− + −Γ = Γ +Γ +Γ +Γ  where ε
−Γ  is the opposite path of the contour 

εΓ . According to the assumption that the crack faces are assumed to be mechanical traction-free, 
electrically impermeable and magnetically impermeable, it can be easily proved that  

 
0

1 ,1 ,10

1lim [ ( ) ( )]
2

aux aux aux aux
JK JK JK JK I IJ J IJ J II u u n qd

ε

σ ε σ ε δ σ σ
ΓΓ →

= − + − + Γ∫Ñ . (15) 

where q  is an arbitrary weight function with value varying smoothly from 1 on εΓ  to 0 on BΓ . 
 
When the material properties are continuously differentiable, applying divergence theorem to Eq. 
(15), one obtains  

 1 ,1 ,1 ,
1{[ ( ) ( )] }
2

aux aux aux aux
JK JK JK JK I IJ J IJ J IA

I u u q dAσ ε σ ε δ σ σ= − + − +∫ . (16) 

where A  is the domain enclosed by the contour 0Γ  for 0εΓ → . According to Eqs. (7)-(9) and 
Eq. (14), the interaction integral in Eq. (16) can be simplified as [7] 
 1 1

,1 ,1 1 , ,1{( ) [ ( ) ( )] }aux aux aux aux
IJ J IJ J JK JK I I IJ IJKL IJKL KLA

I u u q C C q dAσ σ σ ε δ σ σ− −= + − + −∫ 0 x . (17) 

Compared with the expression in Ref. [6] for nonhomogeneous MEE media, the expression in Eq. 
(17) does not contain any term related to the derivatives of material properties with respect to the 
coordinates. Therefore, the present interaction integral can facilitate the facture analysis of practical 
MEE materials whose derivatives of material properties are difficult to obtain. 
 
Moreover, when the integral domain A  contains an interface on which the properties are 
discontinuous (see the dash line IΓ  in Fig. 1), A  needs to be divided into two parts for using 
divergence theorem. Similarly to Ref. [7], the interface has no contribution to the interaction 
integral and thus, the same expression in Eq. (17) can be obtained. Namely, the present interaction 
integral does not require the material properties to be continuous, which brings a great convenience 
to the fracture studies of MEE composites for the integral domain can be chosen to a region 
containing arbitrary material interfaces.  
 
2.4. Extraction of the fracture parameters  
 
This section will introduce how to solve the IFs by using the interaction integral. For linear MEE 
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solids, the J-integral is equal to the total potential energy release rate which is expressed as [6] 

 1 , ( , , , , )
2 MN M NJ Y K K M N II I IV V= =  (18) 

where MNY  is the generalized Irwin matrix which depends on the material constants at the crack-tip 
location [6]. Applying Eq. (18) to the superimposed state S  gives  

 ( ) 1 ( )( )
2

S aux aux
MN M M N NJ Y K K K K= + + . (19) 

By expanding Eq. (19) as ( )S auxJ J J I= + + , we can obtain the interaction integral as 
 aux

MN M NI Y K K= . (20) 
By taking values of the vector [ aux

IIK , aux
IK , aux

IVK , aux
VK ] to be [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0] 

and [0, 0, 0, 1], sequentially, Eq. (19) reduces to  
 ( )

11 12 14 15
II

II I IV VI K Y K Y K Y K Y= + + + , (21) 
 ( )

21 22 24 25
I

II I IV VI K Y K Y K Y K Y= + + + , (22) 
 ( )

41 42 44 45
IV

II I IV VI K Y K Y K Y K Y= + + + , (23) 
and  
 ( )

51 52 54 55
V

II I IV VI K Y K Y K Y K Y= + + + . (24) 
By simultaneously solving Eqs. (21)-(24), the IFs IK , IIK , IVK  and VK  can be obtained. 
 
3. Numerical implementation  
 
3.1. Extended finite element method  
 

 
Figure 2. Finite element mesh of a plate with a crack and a particle [7] 

 
To compute the interaction integral, the values of the actual fields Iu , IJσ  and IJε  in the integral 
domain need to be obtained first. Generally, the numerical methods such as the finite element 
method (FEM), the extended finite element method (XFEM) and the element-free Galerkin method 
(EFGM) are adopted to compute these values. Here, the XFEM is used and the approximations of 
the expanded displacements are adopted as 
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( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ), ( ) ( )
S P C

h i b i c i
I i I i i I i i I

i D i D i D

b c
i i i i

u N u N b N c

H H

ψ ψ

ψ ψ
∈ ∈ ∈

= + +

= − − − = − − −

∑ ∑ ∑

x x x x x x x x
, (25) 

where the variable marked by the index ( )i  denotes the value corresponding to node i ; x  is an 
arbitrary point; x  is a point on the discontinuous surface (crack or interface) which is closest to 
point x ; N  is the standard finite element shape function; bψ  and cψ  are the shifted 
enrichment functions for material interfaces and cracks, respectively; SD  is the set of all nodes in 
mesh; PD  and CD  are the sets of the nodes enriched with bψ  and cψ , respectively; Iu  are the 
standard nodal displacements; Ib  and Ic  are additional degrees of freedom for the nodes in PD  
and those in CD , respectively; ( )H x  is a Heaviside step function. In order to improve the 
numerical precision, the mesh around the crack tip is refined as shown in Fig. 5 
 
In finite element computations, Eqs. (7)-(9) are usually written in the matrix form as  
 , , T= = =σ Cε ε Lu L σ 0 , (26) 
where  

 
1 2

11 22 12 1 2 1 2

11 22 12 1 2 1 2

[ , , , ] ,

[ , , , , , , ] ,

[ , , 2 , , , , ] ,

T

T

T

u u

D D B B

E E H H
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ε ε ε

=

=

= − − − −

u

σ

ε

 (27) 

 

1 2

2 1

1 2

1 2

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

Tx x
x x

x x
x x

∂ ∂ ∂ ∂⎡ ⎤
⎢ ⎥∂ ∂ ∂ ∂⎢ ⎥=

∂ ∂ ∂ ∂⎢ ⎥
⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦

L . (28) 

The material parameters in stiffness matrix C  are given in Voigt notation. Using the relation 
between the indices 11 1→ , 22 2→ , 33 3→ , 23 4→ , 31 5→  and 12 6→ , the constitutive 
Eq. (1) can be written in Voigt notation as:  
 , ,j j j j i i ij j ij j i i ij j ij jC e E h H D e E H B h E Hα αβ β α α β β β βσ ε ε κ β ε β γ= − − = + + = + + . (29) 
where the subscripts , 1, 2,...,6α β =  and , 1,2,3i j = . For 2D MEE media, the stiffness matrix C  
in Eq. (26) is defined as  

 I

I II II 33

(plane strain)
(plane stress)T C

⎧
= ⎨ −⎩

C
C

C C C
 (30) 

where  

 

11 12 16 11 21 11 21 13

12 22 26 12 22 12 22 23

16 26 66 16 26 16 26

I 11 12 16 11 12 11 12 II

21 22 26 12 22 12 22

11 12 16 11 12 11 12

21 22 26 12 22 12 22

,

C C C e e h h C
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C C C e e h h C
e e e
e e e
h h h
h h h
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β β γ γ
β β γ γ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= − − − − =⎢ ⎥
⎢ ⎥− − − −
⎢ ⎥− − − −⎢ ⎥
⎢ ⎥− − − −⎣ ⎦

C C
36

13
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13

23

e
e
h
h
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⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
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⎢ ⎥
⎢ ⎥⎣ ⎦

 (31) 

Then, Eq. (25) can be written in the matrix form as 

 ( )( ) ( ) ( )
( ) ( ) ( )

1

n
h i b i c i

i i i
i

N ψ ψ
=

= + +∑u u b c  (32) 
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where 1 2 4 5[ , , , ]Tb b b b=b , 1 2 4 5[ , , , ]Tc c c c=c  and n  is the node number in an element.  
 
3.2. Numerical discretization of the interaction integral  
 
In numerical computations, the interaction integral in Eq. (17) needs to be discretized in the 
crack-tip local coordinate system as  

 
I II I II

1 2 1 1 2 1

1 1 1 1

1 1

( ) ( )

( )( ) ( ) ( )

eA

aux
T T aux T aux T

pe

ppaux T
e p aux T

p

q q q q
x x x x x x

I w
q
x x

= = − −

⎧ ⎫⎡ ⎤ ⎡ ⎤∂ ∂ ∂ ∂ ∂ ∂
+ + +⎪ ⎪⎢ ⎥ ⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂⎪ ⎪⎣ ⎦ ⎣ ⎦= ⎨ ⎬

∂ ∂⎪ ⎪⎡ ⎤− + −⎣ ⎦⎪ ⎪∂ ∂⎩ ⎭

∑∑

u uσ σ σ σ
J

σσ ε C 0 C x σ
. (33) 

where I 11 12 1 1[ ]TD Bσ σ=σ  and II 12 22 2 2[ ]TD Bσ σ=σ ; Ae  is the number of elements 
in the integral domain A ; ep  is the number of integration points in one element; 

p
J  and pw  

represent respectively the determinant of Jacobian matrix and the corresponding weight factor at the 
integration point p . Here, the derivative of actual displacement vector is  

 ( ) ( ) ( ) ( )( ) ( ) ( )
( ) ( ) ( )

11 1 1 1 1

bn
i i i ii b i c i

i i i
i

N N N
N

x x x x x
ψ

ψ ψ
=

⎧ ⎫⎛ ⎞∂ ∂ ∂ ∂∂ ⎪ ⎪= + + +⎜ ⎟⎨ ⎬⎜ ⎟∂ ∂ ∂ ∂ ∂⎪ ⎪⎝ ⎠⎩ ⎭
∑u u b c . (34) 

 
4. Numerical examples  
 

 
Figure 3. A 2D particulate MEE plate with a crack: (a) geometry and boundary conditions; (b) finite element 

mesh 
 
As shown in Fig. 3(a), a 2D CoFe2O4 particle-reinforced BaTiO3 matrix composite plate is 
considered. The plate of unit length ( 0.5W = ) is composed of 16 square cells of length 2W  each 
of which contains a circular particle of radius 0r  at its center. Therefore, the volume fraction of the 
particles is 2 2

04fV r Wπ=  and in this paper, 0.5fV = . In the center of the plate, there exists an 
inclined crack of length 2a and angle θ  measured counterclockwise. The poling directions of both 
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the matrix and the particles are all assumed to be along 2x -axis. The magneto-electro-mechanical 
loading 0 1σ = , 10

0 010D σ−=  and  8
0 010B σ−=  are applied along the top and bottom edges. 

Meanwhile, an equivalent homogeneous MEE plate of the same geometry and boundary conditions 
as that shown in Fig. 3(a) is adopted to compare the differences of the IFs. The material constants 
are given in Table 1, where the word “effective” denotes the properties of the equivalent 
homogeneous MEE plate. 
 
First, we discuss a horizontal crack ( 0θ = ° ) with the crack length varying from / 0.2a W =  to 

/ 0.8a W = . Fig. 3(b) shows the mesh configuration which consists of 1009 element and 3082 
nodes. Eight-node quadrilateral (Q8) elements are used over most of the mesh and six-node 
quarter-point (T6qp) singular elements are employed around the crack tips. The region composed of 
four-layer elements around each crack tip is adopted to be the integral domain. The IFs are 
normalized by the factors 0 0

0I IIK K aσ π= = , 0 10
010IVK aσ π−=  and 0 8

010VK aσ π−=  in this 
paper. 
 

Table 1. Material parameters  

11C  12C  13C  33C  44C  31e  33e  15e   
Parameters 

( 910 Pa) (C/m2)  
BaTiO3 [8] 166 77 78 162 43 -4.4 18.6 11.6  

CoFe2O4 [8] 286 173 170.5 269.5 45.3 0 0 0  
Effective [9] 226 125 124 216 44 -2.2 9.3 5.8  

31h  33h  15h  11κ  33κ  11β  33β  11γ  33γ  
Parameters 

(N/Am) ( 910− C2/Nm2) ( 1210− Ns/VC) ( 610− Ns2/C2) 
BaTiO3 [8] 0 0 0 11.2 12.6 0 0 5 10 

CoFe2O4 [8] 580.3 699.7 550 0.08 0.093 0 0 590 157 
Effective [9] 290.2 350 275 5.64 6.35 5.367 2737.5 297 83.5 
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Figure 4. Normalized IFs vs crack length. 

 
Fig. 4 shows the normalized IFs obtained at the right crack tip and the distance from the crack tip to 
the particle surface p

tipd . The results show that with the increasing of crack length /a W , the 
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normalized IFs 0/I IK K , 0/IV IVK K  and 0/V VK K  are all increase monotonously for the crack in 
the equivalent homogeneous MEE plate while none of them varies monotonously for the crack in 
the particulate MEE plate. Besides, for the same geometry configuration, the EDIF (MIIF) for the 
particulate plate is quite larger (smaller) than that for the equivalent homogeneous plate. The reason 
may be that both of the crack tips are located in the PE phase.  
 
Next, a crack of fixed length ( / 0.4a W = ) is considered and the angle θ  varies from 0°  to 90° . 
As shown in Fig. 5, both of the crack tips are located in the matrix for (0 ,90 )θ = ° °  and in the 
particles for 18 ~ 72θ = ° ° . Fig. 6(a) and (b) show the normalized IFs obtained at the right crack tip 
varying with the crack angle. The results show that although obvious differences can be noted 
between the IFs for the particulate plate and those for the equivalent homogeneous plate, the 
varying trends of the SIFs are very similar for these two plates, while both the EDIF and MIIF vary 
distinctly with the increasing of the angle θ . The above phenomena imply that the actual PE/PM 
microstructures and the relative position between the crack and particles have great effects on the 
fracture performance of MEE composites. 
 

 
Figure 5. Crack locations for different angle θ . 
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Figure 6. Normalized IFs vs angle θ  for / 0.4a W = : (a) SIFs; (b) EDIF and MIIF. 

 
5. Summary  
 

MEE composites contain PE and PM phases and the interfaces between these constituent 
phases may reduce the reliability of MEE composites since the interfaces generally act as 
sources of failures in service. The complex interface environment brings a great difficulty to the 
fracture analysis of these MEE composites. This paper first introduces a domain form of the 
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interaction integral on the basis of an expanded tensor notation to solve the SIFs, EDIF and 
MIIF. The interaction integral does not require material properties to be differentiable and 
moreover, it is domain-independent for material interfaces which bring a great convenience to 
the fracture analysis of practical MEE composites. Using this method, the fracture problems of 
a particulate MEE composite are studied. The results imply that the actual microstructures of 
MEE composites composed of PE and PM phases have a great influence on their fracture 
performance.  
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