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Abstract   
This paper presents a review of recent progress of the development of weight function method for analyzing 
multiple site damage in aircraft structural panels. An analytical method, the Weight Function Method (WFM), 
has been proposed and further developed to analyze the MSD problems and to determine the related various 
fracture mechanics parameters. The plastic zone sizes and crack opening displacements were extensively 
verified and validated by excellent agreement with available analytical and finite element method results. 
Combined with Crack Tip Opening Angle criterion (CTOA), the present WFM is employed to predict the 
stable crack growth and residual strength of aircraft aluminum sheets containing MSD. The predicted results 
compared very well with the corresponding experimental data. Thereby a novel analytical approach with 
high efficiency and reliability has been devised for MSD analyses in aircraft structures. 
Keywords：Multiple site damage, Weight function method, Plastic zone size, Crack opening displacement, 
Residual strength. 
 
1. Introduction 
 
 Multiple Site Damage (MSD) has been a serious threat to modern transport airplane structure 
safety, and therefore has become a great concern in aircraft damage tolerance design and 
airworthiness certification. A historical milestone case of this type of failure was the in-flight 
disintegration of a 5.5m long piece of the pressure cabin skin of upper fuselage of Aloha Airlines 
Boeing 737-200 over Hawaii in 1988 [1]. After the Aloha accident, all the major commercial 
airplane manufacturers were required to evaluate their aircraft for MSD in the critical areas of the 
wing, empennage and pressure fuselage [2]. 

Various models and methods [3-5] have been developed to determine the stress intensity 
factors, plastic zone sizes and crack opening displacements for the prediction of the fatigue life and 
residual strength for structures with MSD. Most current approaches rely mainly on advanced 
numerical techniques, especially the Finite Element Method (FEM). Despite its powerfulness, 
reliable FEM solutions for MSD require great efforts, time and experience in modeling and 
computation. Classical analytical method, e.g. the complex variable method, is limited to idealized 
MSD configurations. 

Recently, the Weight Function Method (WFM) has been proposed and further developed by 
the authors to analyze various fracture mechanics parameters and stable crack growth of sheets with 
MSD[6-10]. It is shown to be versatile and cost-effective for tackling sheets with MSD problems. 
The approach is outlined in this paper.  
 
2. Weight function method for fracture parameters analysis for collinear cracks 
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2.1. Basic principle 
 

According to the weight function theory, for a crack subjected to an arbitrary pressure σ(x) 
distributed at the crack faces, the non-dimensional stress intensity factor f can be determined by a 
simple quadrature [11,12].  
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where m(a, x) is the weight function for the crack body, E’=E for plane stress, E’=E/(1-ν 2) for 
plane strain，σ is a reference stress, a and x are the non-dimensional crack length and coordinate 
along the crack normalized by the characteristic length W (often taken as unity), here W refers to 
half plate width for the finite width panel containing a center crack. fr(a) and ur(a, x) are the stress 
intensity factor and crack opening displacement, respectively, for a reference load case. 
    The corresponding crack opening displacements can also be easily determined when the 
relevant weight function, m(a, x), is available. From Eq. (1), we have 
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where the non-dimensional stress intensity factor f (s) is obtained using Eq. (1).   
It should be emphasized that, the σ(x) in Eq. (1) refers to the stress distribution at the 

prospective crack line, and is determined from stress analysis for the same configuration but 
without crack. This implies that once the weight function is known for a given crack geometry and 
σ(x) is determined, the stress intensity factors and crack opening displacements for any crack length 
can be obtained by simple integration through Eqs.(1) and (2). The advantages are especially useful 
for stress intensity factor and strip yield model analysis of multiple site damage.  
 
2.2. Weight function method for special collinear cracks 
 

The weight function method for single crack is applied for a special multiple site damage 
case[7]: one large center crack formed by coalescing three un-equal length center cracks in a panel 
of finite width, with compressive yield stress σs uniformly acting along the un-cracked ligament and 
in the crack tip region, Fig.1a. 

The analysis for this case is conducted by assuming the coalesced three un-equal length cracks 
as one single fictitious crack subjected to segment pressure distribution in plastic zones, in addition 
to the applied external load, Fig.1b. Essentially, the Dugdale[13] strip yield model is the 
superposition of two linear elastic solutions. One is for remote uniform tension stress, which is 
available in Ref. [14]. Another is for segment uniform compressive yield stress acting in the plastic 
zones. The stress intensity factor and crack opening displacement for this load case can be 
determined by using WFM, equations (1) and (2). The weight functions for a center crack in a finite 
sheet were given in Ref.[12]. 

For the three coalesced cracks, the critical stress and the fictitious crack length are determined 
based on two conditions [4]: i) Vanishing of the stress singularity at the fictitious crack tips shown 
in Fig.1b; and ii) Zero of the minimum crack opening displacement at the ligament [a1, a1+d].  
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Fig.1  A coalesced center crack in a finite width panel containing three un-equal cracks, the total length of the fictitious 

crack includes all the strip yield zones 
 
2.3. Weight function method for general collinear cracks 

 
In this section, the weight functions for general collinear cracks are presented. The derivation 

of the weight function method for general collinear cracks was based on the reciprocity theorem and 
the superposition principle [8]. It was found that the weight functions for general collinear cracks 
are quite different from that for a single crack configuration.  
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Fig.2. Three symmetric collinear cracks in an infinite sheet subjected to remote uniform stress 

 

Take a typical MSD configuration, three collinear cracks in an infinite sheet, Fig.2, as an 
example. The weight functions for the crack tips A, B and C are given in Eqs.(3-5), respectively [8].  

( )
( )

( ) [ ]
( ) [ ]

1

2

, , , ;  0,', , ,
, , ,  ;  ,, ,

r

a r
rA

u a b c x a x aEm a b c x
u a b c x a x b cf a b c aσ π

⎧ ∂ ∂ ∈⎪= ⋅ ⎨∂ ∂ ∈⋅ ⎪⎩
  (3) 

( )
( ) ( )

( ) [ ]
( ) [ ]

1

2

, , ,  ;  0,', , ,
, , ,  ; ,, , 2

r

b r
rB

u a b c x b x aEm a b c x
u a b c x b x b cf a b c c bσ π

⎧∂ ∂ ∈− ⎪= ⋅ ⎨ ∂ ∂ ∈⋅ − ⎪⎩
  (4) 

( )
( ) ( )

( ) [ ]
( ) [ ]

1

2

, , , ;  0,', , ,
, , , ; ,, , 2

r

c r
rC

u a b c x c x aEm a b c x
u a b c x c x b cf a b c c bσ π

⎧∂ ∂ ∈⎪= ⋅ ⎨∂ ∂ ∈⋅ − ⎪⎩
  (5) 

where the non-dimensional stress intensity factors frA (a,b,c), frB (a,b,c) and frC (a,b,c) for remote 
uniform tension stress were given in Ref.[14]. The corresponding crack opening displacements for 

center and side crack 1 ( , , , )ru a b c x and 2 ( , , , )ru a b c x are: 
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    Having obtained the weight functions for this crack configuration, the stress intensity factors, 
crack opening displacements and plastic zone size of its strip yield model can be determined [8].   
 
2.4. A unified method for strip yield collinear cracks 
 

It is observed that the weight function method is accurate and efficient to obtain the stress 
intensity factor and crack opening displacement. However it is hard to obtain the weight functions 
for cracks in finite sheet. In this section, a simple and efficient unified method [9] is proposed to 
solve the strip yield model for collinear cracks in infinite and finite sheets. The key idea of this 
method is to treat all the cracks, the plastic zones and the remaining elastic ligament between the 
cracks as a single crack, which is solved using the weight function method. For example, the strip 
yield model for two collinear cracks in an infinite sheet shown in Fig.3a is modeled by an 
equivalent single center crack shown in Fig.3b. The center crack of length 2l=(4a+2b+2rB) is 
subjected to (i) remote uniform stress σ; (ii) segments uniform compression yield stress -σs over the 
plastic zones rA and rB; and (iii) continuous compression stress -σ(x) distributed along the remaining 
elastic ligament x [∈ -(b-rA), (b-rA)], respectively. The σ(x) is further discretized by a set of uniform 
segment stress, as shown in Fig.3c. The requirements for the equivalent single crack are: 1) No 
stress singularity at the fictitious crack tip, 2)  Zero crack opening displacements along the elastic 
ligament between the fictitious crack tips, x∈[-(b-rA), (b-rA)]. 
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Fig.3. The concept of the unified method: (a) a strip yield model for two collinear cracks in an infinite sheet, 
 (b) an equivalent single crack for modeling problem (a), (c) discretized stress distribution. 

 
The stress intensity factor F and crack opening displacement U(l, x) for the equivalent crack 

subjected to such complex loading are determined by the superposition of three component elastic 
solutions. Closed form solutions for the first two load cases are available in Ref.[12]. For the 
equivalent crack, the following equations are established to obtain the unknown variables. 
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Having established the equations, the plastic zone sizes and stress distribution along the elastic 
ligament σ(x) can be determined by solving the above equation using the weight function method 
and Newton-iteration. Then, the corresponding crack opening profile for the strip yield model can 
be obtained by superposition. 
 
2.5. Examples and validations  
 
    In this section, two and three collinear cracks in finite and infinite sheets are solved using the 
above methods. Some existing results and FEM results are also presented for comparison.  
 
2.5.1 Three collinear cracks with plastic zones coalesced in a finite sheet  

For a given three crack configuration a1=0.3, a2=0.1 and d=0.2 in a finite sheet shown in Fig.1, 
the critical applied stress σc/ σs and fictitious crack length a are obtained based on the method 
described in section 2.2, which are 0.3777 and 0.7417 respectively. Figure 4 shows the 
corresponding CODs determined by WFM and FEM, and very good agreement is observed. 
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Fig.4. Crack opening profile for the fictitious crack of three un-equal length cracks with coalesced plastic zones.  

(In Fig.1, a1 = 0.3, d = 0.2, 2a2 = 0.2, the half-length of fictitious crack a = 0.7417) [7]. 
 
2.5.2 Two equal-length collinear cracks in finite and infinite sheets 

The strip yield models for two equal-length collinear cracks infinite sheets can be obtained by 
using the WFM and the unified method. However, for the cracks in finite sheet, the unified method 
is applied. Figure 5 shows some typical results of the inner plastic zone sizes and CTOD as a 
function of the applied stress. These results are normalized by the plastic zone size r0 of a single 
Dugdale crack of the same length, r0=a[sec(0.5πσ/σs)-1], a=(c-b)/2. Also shown in these figures are 
the results for the plastic zones critical coalescence. To verify the solution accuracy of the present 
weight function approach, the results are compared to those given by Collins and Cartwright [5] by 
using complex stress function method. It is observed that the results for two collinear cracks in an 
infinite sheet obtained from the weight function method, complex stress function method and 
unified method agree very well. Fig.6 shows the CODs for the strip yield model of the two cracks in 
finite sheet subjected various applied loads. Also shown in this figure are the FEM results, very 
good agreement is observed. However, the unified method (UM) is much more efficient than FEM 
for solving the strip yield model.  
 
2.5.3 Three collinear cracks in an infinite sheet 
    Figure 5 and 6 show the strip yield model for three symmetric collinear cracks in an infinite 
sheet. The plastic zone sizes and CODs were obtained by using the WFM and unified method. 
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           (a) Plastic zone size rA                           (b) Crack tip opening displacement δA 

Fig.5 Plastic zone sizes and crack tip opening displacement for two collinear cracks in finite and infinite sheets[9]. 
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Fig.6 Crack opening profiles for the strip yield model for two equal-length collinear cracks in a finite sheet  

shown in Fig.4a with a=b=1/6[9]. 
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Fig.7. Strip-yield model for three collinear cracks, with separated plastic zones. 
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Fig.8. Plastic zone sizes and CTOD for three equal-length collinear cracks in infinite sheets [9] 



13th International Conference on Fracture 
June 16–21, 2013, Beijing, China 

-7- 
 

 
Some results for the inner crack tip A of three collinear cracks are given in Fig.8. It is observed 

that the results obtained from the unified method agree well with those from weight function 
method. It is also found that for σ/σs→0, the crack tip plastic zone size and opening displacement 
for the crack tip A approach the non-dimensional stress intensity factor squares [fA(a0,b0,c0)]2·r0 and 
[fA(a0,b0,c0)]2·δ0 shown in Figs.8a and b, respectively. The variables r0 and δ0 are the crack tip 
plastic zone size and opening displacement for a center crack in an infinite sheet.  
 
3. Residual strength prediction and validation for sheets with MSD 
 
3.1 CTOA criterion based on strip yield model 
 

The crack tip opening displacement in combination with the strip yield model had been used 
by several researchers to predict the stable crack growth behavior [10,15]. In the method, the crack 
growth was controlled by two parameters. One is critical crack opening displacement δ0 which is 
used to describe the crack initiation, Fig.9a; the other is used to characterize the stable crack growth 
by a constant critical CTOA α,  Fig.9b. The crack growth equation for the whole process is  

( )
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where, δ(a, a-d) is the crack opening displacement at a distance d behind the crack tip, the first 
variable in the bracket is the crack length, and the second is the x location. δc(a-d, a-d) is the plastic 
wake height, which is equal to the crack tip opening displacement. αc is the critical CTOA.  

In practice, a pair of ‘optimal’ δ0 and αc is selected as the critical values. Using the ‘optimal’ 
values, the predicted crack growth behaviors of coupon specimens agree very well with the 
corresponding experiment observations. Here, the C(T) specimen is used to determine these critical 
values. The weight function method is adopted here to determine the COD for crack growth 
analysis. Figure 10 shows the predicted load-crack extension curves obtained by three different 
pairs of parameters. Also in the figure are the results measured from experiment [10]. It is observed 
that the predicted result obtained by the parameters δ0=0.10mm and αc=4° agrees well with test data. 
It is assumed that the criterion for single crack is also applicable to sheets with MSD. And these 
critical values will be used as material properties to predict crack growth for MSD specimens. 
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Fig.9. Crack opening profile of modified Dugdale strip yield model at (a) initiation and (b) at propagation with 

definition of crack growth parameters α and δ0 
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Fig.10 Crack extension against load of C(T) specimen (Δa-P curve)[10] 

 

3.2 Experimental and predicted stable crack growth  
 

With the critical δ0 and αc values determined, the main task for stable crack growth analysis of 
sheets with MSD is to solve the strip yield model to obtain the crack opening displacement for 
cracked panels. As a result, the efficiency and accuracy of the stable crack growth prediction are 
much dependent on the method for solving the strip yield model. 

The unified method was applied to determine the COD for stable crack growth analysis. Here, 
the results for sheets (600mm×1140mm) with five different cracks shown in Fig.11a are presented 
as examples. Figure 11b and c shows the predicted and experimental crack growth behaviors for 
two sheets with five different cracks. In both cases, the length of the side cracks is 15mm. The 
length of the center lead crack and ligaments between cracks are different. In Fig.11b, the 
experimental and predicted maximum residual strengths occurred after the fracture of all the 
ligaments. In Fig.11c, the sheet failed immediately at the fracture of ligament l2 shown. Due to the 
quick fracture of this specimen, the crack growth information for the outside crack tip was not 
recorded. However, the predicted result was able to describe the entire crack growth process, see the 
solid lines in Fig.11. When the applied load reached at the maximum residual strength 99.0KN, all 
the crack tips started to grow, resulting in the fracture of the whole sheet. More detailed information 
about the experiment and prediction on various MSD configurations was given in Ref.[10].   

The elastic-plastic FEM is widely used to predict the residual strength for cracked structures. 
Using the “plane strain core” model [16] and CTOD criterion embedded in ABAQUS software, the 
ligament fracture loads and residual strengths for some of the MSD configurations were given in 
Ref.[10]. It is found that the accuracy of both methods is comparable. However, the computational 
and modeling demands are quite different. For a given MSD configuration, it takes at least two 
hours (a computer with a Pentium® Dual-Core CPU E5300@2.60GHz and 3.00GB RAM) to 
complete a residual strength prediction by using FEM. Yet, it does not include the time for creating 
the finite element model. In order to model the crack growth, the “debond” technique in ABAQUS 
was used. The FEM involves material and contact non-linear analysis [10]. Rich experiences on 
finite element modeling and analysis are required. However, for most of the MSD configuration 
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given in Ref.[10], two minutes is enough to complete a residual strength analysis by using the 
present method. Furthermore, once the crack growth analysis program for a given crack 
configuration is available, there is no modeling time. These advantages are very useful for 
parametric analysis.   

 
 (a) Schematic geometrical dimensions for five collinear cracks 
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(b) a1=90mm, l1=6mm, l2=15mm;     (c) a1=60mm, l1=15mm, l2=60mm; 

Fig.11 Experimental and predicted Δa-P curves for sheet with five collinear cracks 

4 Conclusions  
An analytical approach, the weight function method for dealing with the MSD problems is 

presented in this paper. The study leads to the following conclusions:  
1．For special collinear crack configurations which can be treated as a single crack problem, 

such as three collinear cracks with strip yield plastic zones critical coalescence in a finite sheet, the 
strip yield model solutions can be easily solved by the weight functions for a single crack. The 
results are in perfect agreement with FEM results. 

2．Weight function formulas for more general collinear cracks have been derived, which are 
markedly different from those for the single crack cases. With the derived weight functions, the key 
fracture mechanics parameters, stress intensity factors and crack opening displacements for the 
three collinear cracks under arbitrary load conditions are easily computed by a simple quadrature.  

3. A unified method based on the weight function for a single crack is proposed to solve the strip 
yield models for collinear cracks in infinite and finite sheet. The method is used to solve the strip 
yield models for two and three symmetrical collinear cracks in infinite and finite sheets to obtain 
plastic zones, crack opening displacements and stress distributions along the elastic ligaments 
between cracks. These results are widely compared with exact solutions and FEM results, perfect 
agreements are observed. This method is simple, efficient, reliable, and versatile.  

4. Combined with CTOD criterion, the WFM is used to predict the stable crack growth 
behaviors and residual strengths of MSD configurations in finite-width sheets subjected to 
monotonic loading. The solution efficiency is significantly better than the FEM. 

In summary, the present WFM for MSD provides a powerful analytical approach for fracture 
mechanics analyses and residual strength assessment for MSD-contained aircraft structures.  
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