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Abstract  At temperatures well below the glass transition and at high stresses, the homogenous deformation 
in metallic glasses (MGs) usually develops to a critical point, at which the discontinuity in deformation rate 
is incipient across nano-scale shear bands. However, such a bifurcation condition of homogeneous 
deformation concerning the unique properties of MGs is still lacking for general stress state. In this paper, a 
new constitutive is introduced for MGs accounting for the pressure-sensitivity, dilatancy and structural 
evolution; the shear banding is regarded as the appearance of instability in the constitutive description of 
inelastic deformation. Tying the bifurcation theory to the new model, the general condition of deformation 
localization is derived. The shear band initiation and failure orientation are then precisely predicted for MGs 
by constructing a bridge between the microscopic origin and the loss-of-ellipticity instability in the 
constitutive law in continuum mechanics. 
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1. Introduction 
 
Metallic glass (MG) represents a relatively young class of structural materials with a combination of 
excellent properties. Due to their random atomic structure, plastic deformation in MGs is usually 
accommodated by localized shear bands. These nanoscale shear bands as a precursor of crack lead 
to a fast fracture of material, which presents little plasticity at room temperature. Being a key 
process to understand the underlying plasticity of MGs, shear banding, including its origin and 
propagation, has attracted lots of attention for last decades[1-5].  
 
Although the precise physical picture of how it originates from the internal structure remains 
elusive, it is well accepted that the shear banding of MGs occurs as a consequence of formations 
and self-organizations of shear plastic flow events [3, 6-8]. Those flow events are essentially local 
arrangements of atoms around free volume sites, termed shear transformation zones (STZs) or flow 
defects [9-12]. The transition from local plastic events to macroscopic shear-band instability is 
dominated by the stress-driven free volume softening and assisted by thermal softening [1, 2, 13-15]. 
Regardless of micro-mechanisms, at the continuum level, the shear banding, a physically material 
unstable event, can be regarded as the appearance of instability in the macroscopic constitutive 
description of inelastic deformation [16-19]. It is accepted that the homogenous deformation in 
MGs develops to a critical point, at which the discontinuity in deformation rate is incipient across 
nano-scale shear bands, at temperatures well below the glass transition and at high stresses. Tying 
the bifurcation theory to a pressure-sensitive dilatant constitutive model, Rudnicki and Rice [17] 
derived both the general conditions for shear localization and the orientation of shear band in the 
stress space. Based on this, the shear band direction as an important feature in shear band formation 
was predicted for MGs by Gao et al. [20], which closely depends on the pressure coefficient, the 
dilatancy factor, and etc. In nature, shear banding as a material instability is greatly correlated to 
atomic structural change. Such a picture is also realized by Ruan et al. [21] who embody the atomic 
structural change by the plastic strain and the associated dilatation for MGs. On the other hand, 
through perturbation analysis of constitutive instability, the conditions for the shear instability for a 
given stress state (usually simple shear) can be also obtained for MGs [1, 2, 13]. These analyses 
confirm the important role of free volume, as a state variable, in the constitutive instability. 
However, such a bifurcation condition of homogeneous deformation concerning the unique 
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properties of MGs is still lacking for general stress state. In this paper, we attempt to derive the 
critical condition of the shear band initiation and direction for MGs by constructing a bridge 
between the microscopic origin and the loss-of-ellipticity instability in the constitutive law in 
continuum mechanics.  

 
2. Theoretical model 
 
For initial homogeneously deformed material, the loss of constitutive stability will cause strain 
localization into a shear band [16-19]. Therein, the homogeneous deformation develops to a 
bifurcation point, at which the discontinuity in deformation rate is incipient across a band. As to 
MGs, two internal factors are critical for the shear instability, namely, free volume and thermo [1, 2, 
13-15]. The onset of shear banding in MGs can be reasonably described as a result of constitutive 
instability induced by dramatic change of internal state variables. 
 
2.1 Constitutive model  

For the instability analysis, a proper constitutive is required for MGs. In this section, a new 
constitutive model is developed for MGs due to the following considerations. At macroscopic scale, 
MGs exhibit inherent pressure sensitivity and shear-dilatancy during plastic deformation, which 
usually renders a non-associated flow. Microscopically, the nucleation and coalescence of free 
volume decreases the flow stress of MGs and further leads to shear localization. This is actually 
quite similar to the void evolution mechanism in the continuum damage mechanics. One of the best 
known micro-mechanical models is that of Gurson [22], who studied the plastic flow of a 
void-containing material and established a yielding function reflecting the softening effect due to 
the presence of voids. Here, by introducing the free volume evolution into the framework of 
continuum mechanics, we can establish a new constitutive model to comprehensively and 
satisfactorily describe the deformation in MGs. “Free volume” as the topological disorder in MGs, 
can be simply considered as randomly distributed atomic voids in material. Treating those voids to 
be spherical, the yield function of Gurson is reasonably extended to MGs by taking into the pressure 
sensitivity of the matrix. The free volume evolution is assumed to obey the self-consistent dynamic 
free volume model proposed by Johnson et al.[23]. The thermal effect is neglected since the 
structural disorder induced softening precedes thermal softening at the origin of the shear banding 
[13], especially for the present quasi-static loading case. 
 
For a pressure-independent material containing spherical voids, Gurson model gives the following 
yield function [22]: 
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where 2323 Jss ijije   ( ijmijijs   ) is the effective stress, 3iim    is the mean 

stress, f  is the current fraction of voids, equivalent to free volume concentration, and y is the 

yield stress of the matrix. Numerous studies have demonstrated clearly that pressure affects the 
yield behavior of MGs [24-27]. This is easily reflected by the tension-compression asymmetry of 
failure [28]. Since the Gurson model considers the von Mises matrix, an additional 
pressure-dependent term i.e. m , should be taken into account (analogous to the Drucker-Prager 

criterion) for a proper description of MGs. For simplicity, one can modify the above criterion as 

below by neglecting the minor term
22 ))23(cosh1( fym  . We define the initial free volume in 
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MGs to be 0 . The corresponding shear strength 0  satisfies 

   323cosh1 00 ymy   .Therefore, the new yield criterion can be obtained from Eq.(1) 

as  
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where 0  f is the free volume increment. It is obvious that the shear strength is softening 

with increasing free volume concentration.  
 
Following the self-consistent dynamic free volume model [23], the local time rate of change of the 
free-volume concentration is 
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where  is a material parameter of order unity, R is a free-volume creation function defining the free 

volume produced by a unit shear strain and is given by ssG   ( ss is the effective stress at steady 

state) [29], 32 p
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ije    ) is the effective plastic shear strain rate, e is the 

effective stress, and G is the shear modulus at room temperature.  
Considering the shear dilatancy inherent in the deformation of MGs, we introduce the dilatancy 
factor  and invoke Q as the plastic potential as below 
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When   , the deformation is non-associative. The deviatoric components of the plastic 
deformation strain tensor are obtained as  
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where H is the plastic hardening modulus.   
 
If we adopt the spineless strain rate, the generalized constitutive relation is recast as 
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where jkkikjikijij  


 is the Jaumann rate of the true stress 
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The instantaneous rate of the deformation and the spin tensor are respectively 

  2ijjiij xvxvD  , and   2ijjiij xvxv  .The stress rate and deformation rate 

are related by 

klijklij DL


 ,                                  (7) 

where ijklL  is the elasto-plastic modulus tensor. 
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2.2 Constitutive instability analysis 

We ascribe the initiation of shear band in MGs to bifurcation arisen from the constitutive 
description of the homogeneous deformation. The shear bands inclination is obtained at the onset of 
instability. An initially uniform deformation field of a homogeneous MG plate is considered, see Fig. 
1. The constitutive instability is viewed as a formation of a narrow localized band of deformation 
within the plate under external load [17]. Use rectangular Cartesian coordinates ( 1x , 2x , 3x ), such 

that the 2x -direction is normal to the planes bounding the band. Outside the band the velocity field 
remains uniform and within it varies only in the direction normal to the band. Thus, the 
non-uniformities in the rate of deformation field are expressed as 

    3,2,1),(,22  jixgxv jiji   ,                      (8) 

where iv is a velocity component,   denotes the difference between the local field inside the band 

and the uniform field outside, and the functions ig of 2x  are nonzero only within the band. 

 
Fig.1 Illustration of shear band localization. 

 
The condition 0 iij x and   0 iij xt  make sure that the stress equilibrium 

continues to be satisfied at the inception of bifurcation. The stress rates at incipient localization 
from the original uniform field is thus following 

0 iij x ,                                    (9) 

where the superposed dot denotes its material time rate. The condition of the continuity of the stress 
rate at the band interfaces can be expressed as 

02  j ,  3,2,1j .                              (10) 

Since ij  is not invariant under rigid rotations, by introducing the Jaumann (co-rotational) stress 

rate pijppjipijij 


  . Eq. (10) can be regarded as a set of three quasi-homogeneous 

equations in 1g , 2g , 3g  and the conditions for bifurcation are merely those for which solutions other 

than 0321  ggg  exist. 

If at the bifurcation of deformation-rates, the values ijklL  remain the same inside and outside the 

band, the following difference can be formed based on Eq. (7): 

kijkklijklij gLDL 2


 .                             (11) 

Combining Eqs. (10) and (11) yields a set of linear, homogeneous equations in g’ s ,  
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kjkkjk gRgL 22 , 3,2,1j ,                          (12) 

The above equation have nontrivial solution when 
0det 22  jkjk RL .                             (13) 

Eq. (13) represents the condition for the deformation bifurcation when a non-uniform ( 0ig ) 

continuation of deformation is possible. The bifurcation condition relates the free volume 
concentration at localization cΛ to the parameters G, K, α, β and to the prevailing stress state. Since 

the stress to modulus ratio is significantly small, jkR introduced by the co-rotational stress rate are 

neglected in Eq. (13). We can then obtain the instability condition as below 
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It means that, shear localization starts when the free volume increment reaches a critical value 

c given by Eq. (14). c  is a function of the orientation of the potential plane of localization, 

indicating it would vary from place to place. At a fixed stress state, the shear instability will first 
occur at the location or along the direction where the minimum of c  is required. For the stress 

state as illustrated in Fig. 1, the preferential direction for shear banding should exist, which satisfies 
0 c and the corresponding  denotes the shear band angle. The hardening modulus H is a 

function of  . The increase of free volume causes a gradual loss of load-carrying capacity of MGs, 
corresponding to a decreasing H. The minimal c for preferential shear localization is actually 

consistent with the maximum H first meeting the instability condition as proposed by Rudnicki and 
Rice [17].  
 
3. Discussion 

According to the theoretical model above, the constitutive instability occurs in MGs when the free 
volume increment   satisfies the condition as described by Eq. (14), which gives birth to shear 
band in original homogenous materials. The onset of condition and the incipience direction for MGs 
under pure bending will be specifically discussed next, where both tension and compression cases 
can be included. The related material properties of Vit-1 MGs and parameters used in the 
subsequent analysis have been adopted from elsewhere [23, 29, 30]: Shear strength GPa10  , 

Young’s modulus GPaE 96 , Poison ratio 36.0v , pressure sensitive factor 1.0 , 
density 3/6120 mKg ， 5.1 , 469811 d ， 1622 d , K672refT , K300T , and 

GPass 36.0 . 

The critical free volume increment c  versus θ for α=0.1 and different β can be plotted by Fig. 2. 

Under both tension and compression, the critical c  is found to reach a minimum at the directions 

around 45 (within the green circle), indicating that the free volume required to cause a shear 
instability is smallest along these directions and thus shear band will preferentially initiate. With a 
gradual deviation from these angles, the c  for shear banding increases, denoting a smaller 
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possibility of shear band formation. As is known, 45  corresponds to the direction of the 
maximum shear stress, which is usually the shear direction of crystalline alloys. However, shear 
bands for MGs are predicted to form at the angles normally >45º in tension while <45º in 
compression (see Fig. 2), consistent with the experimental observations in MGs [28]. This deviation 
of shear direction from the maximum shear stress can be partly attributed to the pressure effect 
which usually cannot be ignored in MGs [24-27]. In addition, the c  also shows an obvious 

dependence on dilatancy factor β. With increasing β, the minimum value of c  decreases in tensile 

case while increases in compressive case. It means that shear dilatancy promotes the shear banding 
in tension while impedes that in compression. In Fig. 2, the minimum point of c  in tension is 

relatively lower than that in compression. Due to this asymmetry, strain localization in tensile part 
is usually easier than that in compressive part.  
 

 
 

Fig. 2 Dependence of c on θ for α=0.1 and different β both on tensile side (the blue curves) and on 

compressive side (the red curves). 
 
The inclination angle of shear banding θ versus the dilatancy factor   for different   is plotted 

by Fig.3. We interestingly find that   is a little bigger than 45  for both tension and compression 
even excluding the pressure sensitivity and dilatancy ( 0 and 0 ). This is attributed to the 
specific stress state and depends on the Poisson ratio [20]. Increasing   or  , the inclination 
angle increases in tensile part while decreases in compressive part, showing a asymmetrical 
deviation from 45º. This prediction is similar to those results of uniaxial loading (tension and 
compression) from continuum and molecular simulations [31, 32]. For Vit-1, the pressure sensitive 
factor is around 0.1 [33]. Ranging   from 0 to 0.5, the shear band angles are predicted to be 47º 
~54º and 38º ~44º, respectively in tension and compression. Actually, the shear band angles 
observed in the experiment are 55º on tensile side and 40º on compressive side. In the above 
discussion, the Poisson ratio   is set to be a constant 0.36 for Vit-1.  
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Fig. 3 Dependence of Shear band angle on β for different α both on tensile side (the blue curves) 
and on compressive side (the red curves). 

 
4. Conclusions 
 
The critical condition for bifurcation of homogenous deformation in MGs has been derived in terms 
of free volume. It has been found that pressure sensitivity and shear dilatancy exert important 
effects on the initiation and direction of shear banding. Pressure sensitivity and dilatancy, which are 
usually coupled together, have the similar trends of influence on the shear band birth and 
propagation direction. With the enhancement of these two properties, the tension-compression 
asymmetry of shear banding would be intensified. The instability of constitutive occurs with a 
smaller c  in tension, and the plastic flow is therefore easier to localize into shear bands. This 

highly localization may lead to a poor tensile ductility at room temperature. The asymmetrical 
deviation of shear band angle from 45º has been revealed to be mainly ascribed to these two 
properties.  

Acknowledgements 
Financial support is from the National Key Basic Research Program of China (Grant No. 
2012CB937500), the NSFC (Grants Nos. 11202221，11132011, 11002144 and 11021262), and the 
National Natural Science Foundation of China-NSAF (Grant No: 10976100). 
 

References 
[1] R. Huang, Z. Suo, J. H. Prevost,W. D. Nix, Inhomogeneous deformation in metallic glasses. J 

Mech Phys Solids, 50 (2002) 1011-1027. 
[2] L. H. Dai, M. Yang, L. F. Liu,Y. L. Bai, Adiabatic shear banding instability in bulk metallic 

glasses. Appl Phys Lett, 87 (2005) 141916. 
[3] L. Wang, Z. P. Lu,T. G. Nieh, Onset of yielding and shear band nucleation in an Au-based bulk 

metallic glass. Scripta Mater, 65 (2011) 759-762. 
[4] S. X. Song,T. G. Nieh, Direct measurements of shear band propagation in metallic glasses – An 

overview. Intermetallics, 19 (2011) 1968-1977. 
[5] H. M. Chen, J. C. Huang, S. X. Song, T. G. Nieh,J. S. C. Jang, Flow serration and shear-band 

propagation in bulk metallic glasses. Appl Phys Lett, 94 (2009) 141914. 



13th International Conference on Fracture 
June 16–21, 2013, Beijing, China 

-8- 
 

[6] W. H. Wang, Correlation between relaxations and plastic deformation, and elastic model of flow 
in metallic glasses and glass-forming liquids. J Appl Phys, 110 (2011) 053521. 

[7] C. Schuh, T. Hufnagel,U. Ramamurty, Mechanical behavior of amorphous alloys. Acta Mater, 
55 (2007) 4067-4109. 

[8] M. W. Chen, Mechanical Behavior of Metallic Glasses: Microscopic Understanding of Strength 
and Ductility. Annu Rev Mater Res, 38 (2008) 445-469. 

[9] A. S. Argon, Plastic deformation in metallic glasses. Acta Metall, 27 (1979) 47-58. 
[10] F. Spaepen, Defects in amorphous metals. 1981, Les Houches Lectures XXXV on Physics of 

Defects edited by R. Balian et al. (North-Holland, Amsterdam). p. 133-174. 
[11] W. Johnson,K. Samwer, A Universal Criterion for Plastic Yielding of Metallic Glasses with a 

(T/Tg)2/3 Temperature Dependence. Phys Rev Lett, 95 (2005) 195501. 
[12] M. L. Falk,J. S. Langer, Dynamics of viscoplastic deformation in amorphous solids. Phys Rev 

E, 57 (1998) 7192-7205. 
[13] M. Q. Jiang,L. H. Dai, On the origin of shear banding instability in metallic glasses. J Mech 

Phys Solids, 57 (2009) 1267-1292. 
[14] P. Thamburaja,R. Ekambaram, Coupled thermo-mechanical modelling of bulk-metallic glasses: 

Theory, finite-element simulations and experimental verification. J Mech Phys Solids, 55 (2007) 
1236-1273. 

[15] H. Zhang, S. Maiti,G. Subhash, Evolution of shear bands in bulk metallic glasses under 
dynamic loading. J Mech Phys Solids, 56 (2008) 2171-2187. 

[16] R. Hill, Acceleration waves in solids. J Mech Phys Solids, 10 (1962) 1-16. 
[17] J. W. Rudnicki,J. R. Rice, Conditions for the localization of deformation in pressue-sensitive 

dilatant materials. J Mech Phys Solids, 23 (1975) 371-394. 
[18] R. Hill,J. W. Hutchinson, Bifurcation phenomena in the plane tension test. J Mech Phys Solids, 

23 (1975) 239-264. 
[19] J. R. Rice, ed. The localization of plastic deformation. ed. Theoretical and Applied Mechanics 

e W T K p-P t I, North-Holland, Amsterdam. 1977. 
[20] Y. F. Gao, L. Wang, H. Bei,T. G. Nieh, On the shear-band direction in metallic glasses. Acta 

Mater, 59 (2011) 4159-4167. 
[21] H. H. Ruan, L. C. Zhang,J. Lu, A new constitutive model for shear banding instability in 

metallic glass. Inter J Solids Struct, 48 (2011) 3112-3127. 
[22] A. L. Gurson, Continuum theory of ductile rupture by void nucleation and growth: part I- yield 

criteria and flow rules for porous ductile media. Transactions of the ASME, 99 (1977) 2-15. 
[23] W. L. Johnson, J. Lu,M. D. Demetriou, Deformation and flow in bulk metallic glasses and 

deeply undercooled glass forming liquids-a self consistent dynamic free volume model. 
Intermetallics, 10 (2002) 1039-1046. 

[24] K. M. Flores,R. H. Dauskardt, mean stress effects on flow localization and failure in a bulk 
metallic glass. Acta Mater, 49 (2001) 2527-2537. 

[25] C. A. Schuh,A. C. Lund, Atomistic basis for the plastic yield criterion of metallic glass. Nat 
Mater, 2 (2003) 449-452. 

[26] C. H. Hsueh, H. Bei, C. T. Liu, P. F. Becher,E. P. George, Shear fracture of bulk metallic 
glasses with controlled applied normal stresses. Scripta Mater, 59 (2008) 111-114. 

[27] J. Fornell, A. Concustell, S. Suriñach, W. H. Li, N. Cuadrado, A. Gebert, M. D. Baró,J. Sort, 



13th International Conference on Fracture 
June 16–21, 2013, Beijing, China 

-9- 
 

Yielding and intrinsic plasticity of Ti–Zr–Ni–Cu–Be bulk metallic glass. Inter J Plasticity, 25 
(2009) 1540-1559. 

[28] Y. Chen, M. Q. Jiang, Y. J. Wei,L. H. Dai, Failure criterion for metallic glasses. Phil Mag, 91 
(2011) 4536-4554. 

[29] Q. Yang, A. Mota,M. Ortiz, A Finite-Deformation Constitutive Model of Bulk Metallic Glass 
Plasticity. Comput Mech, 37 (2006) 194-204. 

[30] Y. F. Gao, An implicit finite element method for simulating inhomogeneous deformation and 
shear bands of amorphous alloys based on the free-volume model. Modelling Simul Mater Sci 
Eng, 14 (2006) 1329-1345. 

[31] L. Anand,C. Su, A theory for amorphous viscoplastic materials undergoing finite deformations, 
with application to metallic glasses. J Mech Phys Solids, 53 (2005) 1362-1396. 

[32] M. Zhao,M. Li, Interpreting the change in shear band inclination angle in metallic glasses. 
Appl Phys Lett, 93 (2008) 241906. 

[33] C. E. Packard,C. A. Schuh, Initiation of shear bands near a stress concentration in metallic 
glass. Acta Mater, 55 (2007) 5348-5358. 

 
 

 


