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Abstract  Fatigue life prediction is of great importance to the design and maintenance of structural 
components. A boundary element method (BEM)-based approach is proposed in this paper for fatigue life 
prediction using crack growth analysis. The proposed methodology is based on the well-known Paris 
equation for fatigue crack growth rate, which is related to the amplitude of the stress intensity factor (SIF) as 
a crack grows. The SIF is determined by the fracture spline fictitious boundary element method (SFBEM) 
based on the Erdogan fundamental solutions for plane cracked problems. The fusion of SFBEM and the 
Erdogan fundamental solutions is computationally efficient and provides a powerful tool for crack 
growth-based fatigue life prediction. A numerical example based on the mode-I crack problem is 
presented to validate the present method. The results show that the predicted fatigue life obtained by the 
present approach is accurate in comparison with the analytic solution.  
 
Keywords  Fatigue crack growth, life prediction, fracture mechanics, spline fictitious boundary element 
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1. Introduction 
 
According to a survey conducted by the ASCE Committee on Fatigue and Fracture Reliability [1], 
fatigue is the main reason that causes the failure in steel structures. Therefore, fatigue life prediction 
is an important task for the design and maintenance planning of structures. In general, there are two 
major types of approaches to predict the fatigue life [2]. The first is based on S-N curves combined 
with a damage accumulation rule. The second is based on the fracture mechanics and crack growth 
analysis. Generally, these two approaches are used sequentially. The one with S-N curves is used at 
the ‘design’ stage, and the one with fracture mechanics is used at the ‘assessment’ stage for existing 
structures [3]. From the point of view that initial flaws inevitably exist in engineering materials, the 
crack growth analysis based on fracture mechanics may be more suitable for refined fatigue life 
prediction of structural components. 
 
Crack growth theories have formed the bridge that links fatigue and fracture mechanics concepts [4]. 
The most important contribution is the establishment of the relationships between the crack growth 
rate da/dN and the stress intensity factor (SIF). The most widely used fatigue crack growth model, 
commonly known as Paris law, was proposed by Paris and Erdogan [5]. The Paris law connects the 
crack growth rate with the amplitude of SIF through a simple power function, which makes the 
engineering application more easily. After that, various modifications and extensions to Paris law 
have emerged, and different forms of modified crack growth equations have been offered by 
Forman [6], Elber [7] and Walker [8], et al. 
 
Another important task in the crack growth-based fatigue life prediction is the fracture analysis. 
Since few analytical solutions to SIFs are available, especially for engineering structures, numerical 
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methods are widely employed. The boundary element method (BEM) is one of the most frequently 
used numerical methods. Its high precision and efficiency make it particularly suitable for fracture 
analysis. 
 
In this paper, the Paris law is used to predict the crack growth-based fatigue life. To calculate the 
SIF, an efficient indirect boundary element method (IBEM), the spline fictitious boundary element 
method (SFBEM) [9-16], is adopted to perform the fracture analysis. Numerical examples are 
presented to illustrate the application of the proposed method. 
 
2. Fracture analysis by SFBEM 
 
As a modified IBEM, in SFBEM, nonsingular integral equations are derived rather than singular 
ones; spline functions with excellent performance are adopted as the trial functions to the unknown 
fictitious loads; and the boundary-segment-least-square technique is employed for eliminating the 
boundary residues. Because of these modifications, SFBEM is of high accuracy and efficiency in 
general. SFBEM was first applied to the solution of static plane elasticity problems [9], and so far it 
has been extended to multi-domain plane problems [10], orthotropic plane problems [11], plate 
bending problems [12], elastic fracture problems [13], stochastic elastostatic problems [14, 15] and 
probabilistic fracture mechanics [16]. 
 
In this study, a SFBEM based on the Erdogan fundamental solutions for infinite cracked plates [13, 
16] is employed to conduct fracture analysis of linear-elastic cracked structures. As the Erdogan 
fundamental solutions [17, 18] are derived from an infinite plate containing a crack, when they are 
used in the formulation of BEM, the stress boundary conditions on the crack surface are 
automatically satisfied, and the singular behavior at the crack tip can be naturally captured. 
Therefore, no boundary elements are required to place along the crack surface. In addition, the SIF 
of the crack problem can be calculated directly from the corresponding fundamental solution of SIF, 
with no need of transformation from the displacement field around the crack tip, as is normally 
required in SIF analysis by the other numerical methods. The SFBEM in combination with the 
Erdogan fundamental solutions has been shown to be more computationally accurate and efficient 
and thus provides a powerful tool for fracture analysis. 
 

x

y
F

S
L

(2)

Ω
2a

F (1)

X (2)

X (1)
  

x

y

S
L

Ω
2a

F (2)

F (1)

X (2)

X (1)
 

(a) Inner crack         (b) Edge crack 
Figure 1. Plane domain embedded in an infinite plane with a crack 
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Consider an elastic plane domain with a crack, as shown in Fig.1. Let the domain studied be Ω, and 
assume the configuration boundary of the domain to be L, not including the crack surface. The body 
forces within the domain are assumed to be F(l) (l=1, 2), and the lengths of the inner crack and the 
edge crack are taken to be 2a and a, as shown in Fig.1(a) and Fig.1(b), respectively. Embed Ω into 
an infinite plane domain with a crack, the crack length being 2a, and apply unknown fictitious loads 
X(l) (l=1, 2) along a fictitious boundary S outside Ω, whose shape is similar to that of the real 
boundary L, as also shown in Fig.1. 
 
Due to the use of the Erdogan fundamental solutions [18], not only the governing differential 
equations within Ω but also the stress boundary conditions on the crack surface are satisfied 
automatically. Therefore, only the boundary conditions along the contour of Ω need to be 
considered. Under the combined action of the body force F(l) and the fictitious loads X(l) (l=1, 2), the 
boundary conditions along L can be expressed as 

 ( ) ( ) ( ) ( ) ( ) ( )
2 2

( ) ( ) ( ) ( )
L S S L Ω Ω LS

1 1
; d ; d 1,2l l l l

k k k
l l

G z z X z s G z z F z V H z k
Ω

= =

+ = =∑ ∑∫ ∫∫ , (1) 

where zL∈L, zS∈S, zΩ∈Ω; k=1,2 denotes that two boundary conditions exist along L for plane 
problems; Hk are the known boundary functions along L; and ( )l

kG  are the kernel functions 
consisting of the Erdogan fundamental solutions. 
 
Eq. (1) are nonsingular fictitious boundary integral equations because the source points will never 
coincide with the field points in the kernel functions. However, analytic solutions to Eq. (1) are 
normally not available, and the integral equations should be solved on a numerical baisis. For this 
purpose, the unknown fictitious loads X(l) are expressed in terms of a set of B-spline functions, and 
the boundary-segment technique is used to eliminate the resulting boundary residues [10]. Then Eq. 
(1) turns into the following numerical equation as 
 [ ]{ } { } { }A X B C+ = , (2) 

where { }X  is the column matrix consisting of the unknown spline node parameters of the 

fictitious loads along S; [ ]A  is influence matrix of { }X ; and { }B  and { }C  are the known 
column matrices depending on the body forces F(l) within Ω and the boundary condition functions 
Hk along L, respectively. Usually Eq. (2) needs to be solved on a least-squares basis as generally 
overdeterminate collocation is conducted to achieve a better solution with more boundary segments 
while keeping the number of fictitious boundary elements to be at a lower level. 
 
Once the spline node parameter { }X  is determined, the mode-I and II SIFs of the cracked problem 
can be obtained from the discrete forms of the following equations: 

 ( ) ( ) ( ) ( ) ( )
2 2

( ) ( ) ( ) ( )
S S Ω ΩS

1 1
d d I, IIl l l l

j j j
l l

K K z X z s K z F z V j
Ω

= =

= + =∑ ∑∫ ∫∫ , (3) 

where ( )l
jK  (j=I,II; l=1,2) are the Erdogan fundamental solutions of SIFs [18]. 

 
3. Crack growth-based fatigue life prediction 
 
3.1. Paris law 
 
Crack growth can occur under cyclic loading. Using Paris equation, the crack growth rate can be 
expressed as the function of the SIF range, and can be written as 
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 ( ) ( )th
d
d

ma C K K K
N
= Δ Δ > Δ , (4) 

where a is the crack size; N is the number of cycles of the alternating stress; ΔK=K(σmax)-K(σmin) is 
the SIF range; ΔKth is the fatigue threshold, which means if ΔK≤ΔKth, the crack is assumed to be 
non-propagating; C and m are the material constants obtained from experiments. 
 
By integrating Eq. (4), the crack growth-based fatigue life can be obtained as 

 
( )

c

0
p

da

ma

aN
C K

=
Δ∫ , (5) 

where a0 is the initial crack size; ac is the critical crack size at fatigue failure and can be determined 
using the fracture toughness KIc. 
 
Generally, the explicit solutions to SIFs for most engineering problems are not available. Therefore, 
numerical approaches are required for fatigue life prediction when using Eq. (5). 
 
3.2. Fatigue life prediction using SFBEM 
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Figure 2. Propagation of a crack 

 
The propagation of a crack from the initial crack size a0 to the critical crack size ac can be 
illustrated in Fig.2. The number of cycles of the alternating stress corresponding to the ith step of 
the crack growth can be approximately expressed as 
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⎝ ⎠ , (6) 

where Δai is the crack growth size of the ith step; d
d i

a
N

⎛ ⎞
⎜ ⎟
⎝ ⎠

 is the average crack growth rate during 

the current step and can be determined using the Paris equation, that is  
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In the above equation, iKΔ  is the average SIF range of the ith step and can be defined as 
 ( )1 / 2i i iK K K−Δ = Δ + Δ , (8) 
where ΔKi-1 and ΔKi are the amplitudes of SIF corresponding to ai-1 and ai, respectively, and can be 
determined using the SFBEM presented in section 2. 
 
The procedure for fatigue life prediction based on SFBEM is as follows: 
 
1. Determine the initial SIF range ΔK0 corresponding to the given initial crack size a0 using the 

SFBEM in conjunction with the Erdogan fundamental solutions. 
 
2. Check if ΔK0>ΔKth. If yes, the propagation of the crack will occur. 
 
3. Assume the crack growth size of the ith step to be Δai=ηai-1 (i=1,2,…), in which η=0.1~0.01. 

Then the crack size of the ith step is 0
1

i

i j
j

a a a
=

= + Δ∑ . 

 
4. Determine the SIF range ΔKi corresponding to ai using SFBEM. 
 
5. Calculate the average SIF range of the ith step iKΔ  using Eq. (8). 
 
6. Calculate the number of cycles of the alternating stress of the ith step ΔNi using Eqs. (6) and (7). 
 
7. Check if Ki(σmax)<KIc. If yes, go to step 3. If no, then stop. Assume the final step number is n. 

Then the fatigue life can be obtained as 

 p
1

n

i
i

N N
=

= Δ∑ . (9) 

 
4. Numerical examples 
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Figure 3. A square plate with a center crack 

 
Fig.3 shows a square plate with a center crack subjected to a cyclic loading with Δσ=200MPa 
(σmax=200MPa, σmin=0). The fatigue threshold and the fracture toughness of the material are taken to 
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be ΔKth=5.5MPa·m1/2 and KIc=104MPa·m1/2, respectively. The material constants C and m in the 
Paris equation are assumed to be C=6.9×10-12 m/cycle/(MPa·m1/2)3 and m=3, respectively. The 
initial crack size is taken to be a0=0.5mm. 
 
4.1. Analytic solution 
 
Since the crack size is much smaller than the size of the plate, the SIF in this case can be 
approximately determined using the analytic solution for an infinite plate with a crack, that is 
 K aσ π= . (10) 
 
It can be deduced from the above equation that 
 

1 1
2 2

0 0 th7.927 MPa m 5.5MPa mK a Kσ πΔ = Δ = ⋅ > Δ = ⋅ , (11) 
and thus the crack propagation will occur. 
 
From Eq. (10), we also have 

 
2

Ic
c

max

1 86.07 mmKa
π σ
⎛ ⎞

= =⎜ ⎟
⎝ ⎠

. (12) 

 
Therefore, the fatigue life can be obtained using Eq. (5) as follows: 

 
( ) ( )( )

c

0

5
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0 c

d 1 1 1 2.688 10 cycle
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aN
a aC K C m σ π

− −
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∫ . (13) 

 
4.2. Numerical solution 
 
When using SFBEM to calculate the SIF of the plate, 16 fictitious boundary elements and 40 
boundary segments are adopted, and the distance between the fictitious boundary and the real 
boundary is taken to be d=40mm. The value of the coefficient η in step 3 of section 3.2 is assumed 
to be 0.1. In the calculation, 53 steps of crack propagation have been involved in total. The results 
obtained by the present method are listed in Table 1. For the purpose of comparison, the results of 
the analytic solution are also presented in the table.  
 

Table 1. Results of fatigue life prediction 
Method ΔK0 (MPa·m1/2) ac (mm) Np (cycle) 

Present method 7.928 74.57 2.652×105 

Analytic method 7.927 86.07 2.688×105 
 
It can be seen from Table 1 that, for the fatigue life of the plate, the results obtained by both 
methods are in good agreement, while for the critical crack size, certain discrepancy occurs. 
Actually, as the crack size increases with propagation, the error of Eq. (10) corresponding to the 
case of infinite plate becomes larger, leading to the error of the critical crack size in the analytic 
solution, as shown in Fig.4. But as the crack size approaches the critical size, the number of cycles 
at this stage contributes much less to the fatigue life. Therefore, good agreement is still observed for 
the prediction of the fatigue life between the two methods, as can be seen from Fig.5. 
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Figure 4. SIF versus the crack size 
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Figure 5. Number of cycles versus the crack size 

 
5. Conclusions 
 
The SFBEM based on the Erdogan fundamental solutions has high accuracy and efficiency for SIF 
analysis of linear-elastic cracked structures, and therefore can serve as an effective approach for 
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crack growth-based fatigue life prediction using the Paris equation. A numerical example is 
presented to demonstrate the validity of the present method. The results show that the predicted 
fatigue life obtained by the present method agrees well with the analytic solution. 
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