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Abstract A transient coupled thermoelastic analysis of two-dimensional, isotropic and linear elastic 
bimaterials, which are composed of a functionally graded (FG) layer attached to a homogeneous substrate, 
subjected to thermal shock is investigated. For this purpose, a boundary element method (BEM) for linear 
coupled thermoelasticity is developed. The material properties of the FG layer are assumed to be continuous 
functions of the spatial coordinates. The boundary-domain integral equations are derived by using the 
fundamental solutions of linear coupled thermoelasticity for the corresponding isotropic, homogeneous and 
linear thermoelastic solids in the Laplace-transformed domain. For the numerical solution, a collocation 
method with piecewise quadratic approximation is implemented. Numerical results for the dynamic stress 
intensity factors are presented and discussed. 
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1. Introduction 
 
Functionally graded materials (FGMs) represent a new generation of high-performance composite 
materials formed by continuously variable composition of the constituents over volume [1]. They 
possess many superior mechanical, thermal, corrosion-resistant and wear-resistant properties in 
comparison to the conventional composite materials. Therefore, in recent years FGMs have 
received an increasing research interest in materials and engineering sciences. An important 
application area of FGMs is in the thermal barrier coating technology, where a functionally graded 
(FG) layer is deposited on a homogeneous substrate. Thermoelastic fracture analysis of FG coated 
materials and structures is of particular importance to their thermal and mechanical integrity, 
reliability and durability in novel engineering applications. Such analysis may provide a 
fundamental understanding of and a deep insight into the failure mechanisms of FG coated 
materials and structures, which may aid in their design, optimization and applications. Due to the 
high mathematical complexity of the corresponding dynamic thermoelastic problems for 
non-homogeneous FGMs, analytical methods can be obtained only for very simple geometry and 
loading conditions. In general cases, numerical and experimental methods have to be applied to 
fracture and fatigue analysis in FG coated materials and structures subjected to thermal shock 
loading conditions. 
In this paper, a boundary element method (BEM) for transient thermoelastic crack analysis in 
two-dimensional (2-D), isotropic and linear thermoelastic bimaterials consisting of an FG coating 
layer attached to a homogeneous substrate under thermal shock is developed. The FG/homogeneous 
bimaterials are modeled by using a sub-domain technique [2]. The bimaterial system is divided into 
a homogeneous and a non-homogeneous sub-domain along the interface. The equations of motion 
and the thermal balance equation constitute the governing equations of the transient linear coupled 
thermoelasticity. The Laplace-transform technique is applied to eliminate the time-dependence in 
the governing equations. A boundary-domain integral equation representation is derived from the 
generalized Betti’s reciprocal theorem for FGMs in conjunction with the fundamental solutions for 
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homogeneous and linear thermoelastic solids. The boundary-domain integral equations (BDIEs) are 
obtained for the unknown mechanical and thermal fields and then applied to each sub-domain and 
the continuity conditions are employed on the interface boundary. The BDIEs for the FG layer 
contain domain integrals, which describe the material's non-homogeneity. A crucial point of the 
numerical solution procedure is how to evaluate the domain integrals without discretization of the 
non-homogeneous sub-domain into internal cells. In this analysis, the domain integrals are 
transformed into boundary integrals over the global boundary by using the radial integration method 
(RIM) [3, 4]. For the homogeneous and linear elastic substrate, only boundary integrals need to be 
considered in the boundary integral equations. A collocation method is implemented for the spatial 
discretization. The final time-dependent solutions are obtained by using the Stehfest’s algorithm [5] 
for the inverse Laplace-transform. Numerical results are presented and discussed to demonstrate the 
accuracy and efficiency of the proposed BEM as well as the effects of the material gradation and 
thermo-mechanical coupling on the dynamic stress intensity factors (SIFs). 
 
2. Problem statement  
 
Let us consider isotropic and linear thermoelastic bimaterials in a 2-D domain, which are composed 
of an FG layer attached to a homogeneous substrate. The FG/homogeneous bimaterials are modeled 
by using a sub-domain technique [2]. The bimaterial system is divided into a homogeneous (0)  
and a non-homogeneous sub-domain (1)  along the interface. The material properties of the FG 
layer such as the mass density 1( )xñ , the Young’s modulus 1( )E x , the thermal conductivity 1( )k x , 
the specific heat 1( )c x  and the linear expansion coefficient 1( ) x  are assumed to be continuous 
functions of the Cartesian coordinates, while the Poisson’s ratio 1  and the material parameters of 
the homogeneous substrate, which are denoted by a subscript zero, are taken as constant. In this 
case, the elasticity tensor can be written as 
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where n  is the shear modulus and ij  is the Kronecker delta symbol. The relation between the 
stresses ( ) ( , )n

ij t x  and the displacements ( )
, ( , )n

k lu tx  with the consideration of the temperature 
changes ( ) ( , )n t x  is defined by the Duhamel-Neumann constitutive equations 

 ( ) ( ) ( ) ( )
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where the stress-temperature modulus is given by / (1 2 ).n n n nE      In the absence of body 
forces and heat sources, the governing equations in transient linear coupled thermoelasticity are 
given by the equations of motion and the thermal balance equations [6] 
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where 0 /n nT k    and 0T  is the reference temperature. Unless otherwise stated, the conventional 
summation rule over double indices is implied, 0,1n   and other Latin indices take the values of 1 



13th International Conference on Fracture 
June 16–21, 2013, Beijing, China 

 
 

-3- 

 

and 2 . From the mathematical point of view, the governing equations are the coupled partial 
differential equations with variable coefficients for the FG sub-domain (1) . A measure of the 
thermo-mechanical coupling due to the dilatational term ( )

,
n

n k ku   in Eq. (4) is defined by a 
dimensionless coupling parameter [6, 7] 
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that equals zero for an uncoupled problem.  
The following essential and natural boundary conditions for the mechanical and thermal quantities 
are prescribed as 
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where ( )n
it  and ( )nq  represent the traction vector and the heat flux defined by 

 ( ) ( ) ( ) ( )
,( , ) ( , ) ( ), ( , ) ( ) ( , ) ( ).n n n n

i ij j n i it t t n q t k t n    x x x x x x x  

Here, ( )in x  denotes the components of the outward unit normal vector, ( )n
u  and ( )n

t  are the parts 

of the external boundary ( ) ( ) ( )n n n
u t    , ( ) ( )n n

u t   , in which the displacements ( )n
iu  and 

the tractions ( )n
it  are given, respectively; ( )n

  and ( )n
q  are the parts of the boundary 

( ) ( ) ( )n n n
q    , ( ) ( )n n

q    with the specified temperature ( )n  and the heat flux ( )nq , 

respectively. The crack-faces are assumed to be free of mechanical and thermal loadings  

 ( ) ( )( , ) 0, , ( , ,) 0,n n
i c ct t q t   x x x x  (7) 

where c c c
      represents the upper and lower crack-faces. The continuity conditions on the 

interface are prescribed as 

 
(0) (1) (0) (1) (01)

(0) (1) (0) (1) (01)

( , ) ( , ), ( , ) ( , ), ,

( , ) ( , ), ( , ) ( , ), .

i i

i i

u t u t t t

t t t t q t q t

    

    

x x x x x

x x x x x
 (8) 

The initial conditions are given by  

 ( , ) ( , ) 0, ( , ) 0 for 0.i iu t u t t t    x x x  (9) 

Applying the Laplace-transform to Eqs. (3) and (4) and substituting Eqs. (1) and (2) yield 
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where a superimposed bar over a quantity denotes the Laplace-transformed quantity, p  is the 
Laplace-transform parameter, 牋n n n nk c  ñ  is the thermal conductivity and 2 /n np   . 
Integral representations of the displacements and the temperature at an arbitrary point of the domain 
are derived from the generalized Betti’s reciprocal theorem in conjunction with the fundamental 
solutions of the Laplace-transformed linear coupled thermoelasticity for a homogeneous solid [6, 8, 

9]. By moving the observation point to the boundary ( )nx  or keeping it in the domain ( )nx  the 
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following system of boundary-domain integral equations (BDIEs) for the mechanical and thermal 
fields at the boundary and interior points is obtained as 
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where x  and y  represent the source and observation points, ( , , )ijU px y , ( , , )iU px y , ( , , )T px y , 

( , , )ijT px y , ( , , )iT px y , ( , , )iZ px y  and ( , , )F px y  are the fundamental solutions [6, 8, 9]. Here, a 

tilde denotes the ratio of the non-homogeneous quantity to the corresponding homogeneous quantity. 

The functions (1)( )u
jF  and (1)( )F   describe the non-homogeneity of the FG layer. They vanish 

completely for the homogeneous substrate (0) . The functions (1)( )u
jF  and (1)( )F   are defined as [8, 

9] 
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where the fundamental solutions ( , , )ijE px y , ( , , )iG px y , ( , , )ijkV px y  and ( , , )ikW px y  are given 
in [8]. It should be noted that Eqs. (11) are no longer pure boundary integral formulations in the 
non-homogeneous sub-domain (1)  because they involve domain integrals containing unknown 
fields. The BDIEs (11) contain boundary and domain integrals with singular kernels. The strongly 
singular integrals are interpreted in the sense of the Cauchy principal value. Making use of the 
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singularity subtraction technique and the variable transformation technique the strong and weak 
singularities in Eqs. (11) can be removed [2, 8, 9]. 
 
3. Numerical solution procedure  
 

In order to avoid the domain discretization into internal cells for evaluating the domain integrals in 
Eqs. (12) and (13) the radial integration method (RIM) developed by Gao is applied [3, 4]. The 
functions (12) and (13) can be rewritten in matrix form [8] as  

 ( , ) ( , , ) ( , ) ( , , ) ( , ) ,p p p d p p d
 

    F x F x y u y G x y u y  (14) 

where F  is the vector of functions (1)( )u
iF  and (1)( )F  , u  is the vector containing the 

displacements iu  and the temperature  , and the 3 3  matrices F  and G  are given in [8]. 
The unknown fields iu  or   are approximated by a series of prescribed basis functions and the 
linear polynomials  

 0

1 1

( , ) ( ) ( ) ( ) ( ), ( ) ( ) 0,A A j A A A
i i i j i i i j

A A A

u p p R a p x a p p p x
 

          x  (15) 

where || ||AR  x x  is the distance from the application point A  to the field point x , A
i  and 

j
ia  are the unknown expansion coefficients to be determined and A

jx  denotes the coordinates at 
the application point A , which consist of all boundary nodes and some selected internal nodes. The 
fourth order spline-type radial basis function [3, 4] is used  

 2 3 4( ) 1 6 8 3 .A R R R R      (16) 

The unknown coefficients A
i  and j

ia  can be determined by applying the application point A  in 
Eq. (16) to every node. Then, a system of linear algebraic equations can be obtained in matrix form 
as 

     ,u     (17) 

where    is the vector consisting of the coefficients A
i  for all points and j

ia . If two 
application points do not coincide, the matrix    is invertible and thereby 

      1
.u
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Substitution of Eqs. (15) into the domain integrals of Eq. (14) yields  
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Applying the RIM [3, 4, 8] to the domain integrals in Eq. (19) results in 
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with the radial integrals 
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It is important to note here that the term ,ir  appearing in the radial integrals is constant [4] and the 
relation ,k k ky x r r   is used for the transformation from y  to r . The radial integrals (21) are 
regular and can be evaluated numerically by using standard Gaussian quadrature for every field 
point. 

The BDIEs (11) can be solved numerically by applying a collocation method. The usual 

discretization procedure applied in BEM is utilized for the boundary discretization of the BDIEs in 

the Laplace-transformed domain [2, 6]. After numerical integrations, applying the prescribed 

boundary conditions and a rearrangement of the equations, a system of linear algebraic equations can 

be obtained as  
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Here, b
nx  is the 3 bN  vector of the unknown values of the displacements ( )n

iu , the tractions ( )n
it , 

the temperature ( )n  and the heat flux ( )nq  at the boundary collocation points, i
nu  is the 3 dN  

vector of the unknown displacements ( )n
iu  and temperature ( )n  at the internal nodes, b

ny  and 
i
ny  denote the 3 bN  and 3 dN  vectors composed of the prescribed boundary conditions. The sizes 

of the matrices b
nA , i

nA , 1
bD  and 1

iD  are 3 3b bN N , 3 3d bN N , 3 3bN N  and 3 3dN N , 
respectively, bN  and dN are the numbers of boundary and internal nodes and I  is the identity 
matrix. The system of linear algebraic equations (22) with the continuity conditions on the interface 
nodes (8) is solved numerically for discrete values of the Laplace-transform parameter p  to obtain 
the boundary unknowns b

nx , the interior primary field quantities i
nu  and the unknown fields at the 

interface nodes [2]. The final time-dependent solutions can be calculated by using the Stehfest’s 
algorithm [5] for the inverse Laplace-transform. 
Different methods can be used for the evaluation of the SIFs. In this analysis, the extrapolation 
technique following directly from the asymptotic expansion of the displacements in the vicinity of 
the crack-tip is employed [2, 10]. For a crack located on the 1x -axis, the dynamic mode-I and 
mode-II SIFs are related to the crack-opening-displacements ( , )iu t x  by 

 
 
 

 
 

I 2tip

II 1

,2 1
lim ,

,1 a

K t u t

K t u ta

                     
 (23) 

where 03 4     or 0 0(3 ) / (1 )      for plane-strain or plane-stress conditions, respectively, 
tip  is the shear modulus at the crack-tip, and   is a small distance from the crack-tip to the 

considered node on the crack-faces. 
 
4. Numerical results  
 
As a numerical example we consider an edge crack in a rectangular, isotropic and linear 
thermoelastic FG/homogeneous bimaterial plate, which is subjected to a cooling thermal shock 

0( , ) ( )t H t  x  as shown in Fig. 1a. Here, 0  is the constant loading amplitude and ( )H t  is 
the Heaviside step function. The geometry of the cracked plate is determined by the width 1w  ,  
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Figure 1. An edge crack in a FG/homogeneous bimaterial plate 
 

height 0 1 3h h w   and crack-length 0.4a w . An exponential material gradation with the 
gradient parameter g  in the 2x -direction perpendicular to the crack-line of the FG coated 
structure is assumed as [8] 

 0 2 0 2 0 2exp( ), exp( ), exp( ).g g gE E x k k x c c x       (24) 

The mass density, the Poisson’s ratio and the linear thermal expansion coefficient are taken as 
( ) 1xñ , ( ) 0.02 x  and 0.25  , respectively. Plane-strain condition is assumed in the 

numerical calculations. The non-homogeneity of the FG layer induces a mixed mode crack-tip 
loading even though the cracked plate is subjected to a pure thermal loading on the top and the 
bottom side symmetric to the crack-faces, i.e., the mode-II dynamic SIF is also present along with 
the mode-I dynamic SIF. For convenience, the dynamic SIFs and the time are normalized as 

, , 0 0 0( ) ( ) / ( )I II I IIK t K t E a     and 2
0 0 0/ ( )t t k a c ñ . 

To test the accuracy of the proposed BEM, the numerical results are compared with those obtained 
by the FEM analysis, which show a good agreement [8, 9, 11]. The time variations of the 
normalized mode-I and mode-II SIFs for the three selected combinations of the gradient parameters 

1 ln(2),  ln(3),  ln(5)gh   and 1 ln(0.5),  ln(0.333),  ln(0.2)gh   are presented in Figs. 2 and 3. 
The negative gradient parameters (Fig. 3) result in a reduction of the peak dynamic SIFs in 
comparison to that for positive gradient parameters (Fig. 2). The wave velocity in this case is also 
decreasing. Hence, the peak values of the dynamic SIFs are reached at larger time instants. The 
opposite tendency is observed in Fig. 2 with the increasing gradient parameters. Thus, the present 
results show that the gradient parameters may have significant influences on the dynamic SIFs. To 
investigate the influence of the thickness of the FG coating on the dynamic SIFs, four relative 
thickness values 0 1/ 5,  10,  15,  20h h   are selected for the gradient parameters 1 ln(2)gh   and 

1 ln(0.5)gh   in the numerical analysis. The time variations of the normalized mode-I and 
mode-II dynamic SIFs for the selected thickness ratios are shown in Figs. 4 and 5. The peak of the 
SIFs decreases with decreasing thickness of the FG layer for both values of the material gradient 
parameter. 
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Figure 2. Normalized dynamic a) mode-I and b) mode-II SIFs for 1 ln(2), ln(3), ln(5)gh   

 

Figure 3. Normalized dynamic a) mode-I and b) mode-II SIFs for 1 ln(0.5), ln(0.333), ln(0.2)gh   

 

Figure 4. Normalized dynamic a) mode-I and b) mode-II SIFs for 0 1/ 5,10,15,20h h   and 1 ln(2)gh   

The effects of the thermo-mechanical coupling on the normalized dynamic mode-I and mode-II SIFs 
can be observed in Figs. 6 and 7. In this case, the thermo-mechanical coupling parameter (5) is taken 
as 0.133   and 0.3  , which correspond to the previously used material parameters with the 
reference temperatures 0 100T   and 0 225T  , respectively. With the increase of the coupling 
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parameter, the peak values of the normalized dynamic SIFs are reduced. The numerical results imply 
that the maximum amplitudes of the normalized dynamic SIFs and the time instants, at which they 
occur, depend significantly on the values of the gradient parameters, the ratios of the thicknesses and 
the thermo-mechanical coupling.  

 

Figure 5. Normalized dynamic a) mode-I and b) mode-II SIFs for 0 1/ 5,10,15,20h h   and 1 ln(0.5)gh   

 

Figure 6. Normalized dynamic a) mode-I and b) mode-II SIFs for 0, 0.133, 0.3   

 

Figure 7. Normalized dynamic a) mode-I and b) mode-II SIFs for 0, 0.133, 0.3   
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5. Summary 
 
A BEM for 2-D transient coupled thermoelastic crack analysis in FG/homogeneous bimaterials 
under thermal shock is presented in this paper. The sub-domain technique is applied to model the 
FG/homogeneous bimaterials. Fundamental solutions of linear coupled thermoelasticity for 
homogeneous, isotropic and linear thermoelastic solids are used to derive the boundary-domain 
integral equations. The material non-homogeneity of the FG layer is described by domain integrals, 
which are evaluated by using the RIM. A collocation-based BEM is developed in the 
Laplace-transformed domain. The numerical inversion of the Laplace-transform is performed by 
Stehfest’s algorithm. The dynamic SIFs are evaluated by using displacement extrapolation 
technique. The temporal variations of the dynamic SIFs for an edge crack in a 2-D 
FG/homogeneous bimaterial plate are presented. The effects of the material gradation, the FG 
coating thickness and the thermo-mechanical coupling on the dynamic SIFs are analyzed. 
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