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ABSTRACT

A J-integral estimation solution is derived for pipes containing a
circumferential throughwall crack and subjected to bending moment loading.
The solution is applicable to a wide range of crack lengths and include pipe
R/t effects. The solution is useful for calculating J directly from single
load-displacement curve available from pipe fracture experiment or finite
element analysis. As a special case, J solution is presented for a power
law hardening material. The approach developed in this paper can be applied
to compact tension, bend bar, and center-cracked tension specimens.
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INTRODUCTION

Recently, a J-Integral estimation approach was presented by Zahoor (1988).
This approach was based on an earlier work by Zahoor (1987a) for the notched
round bar specimen, where the J estimation solution was developed for a wide
range of crack sizes. In these papers the contained plasticity solution was
used to infer the relationship for the plastic component of the displacement
due to the crack in terms of the applied load and crack length. For ease of
derivation, the work (Zahoor, 1988) neglected certain crack length dependent
terms in the derivation of the plastic component of J, J,. As a
consequence, J result for large crack lengths is expected to be approximate
for applications involving ductile and tough materials, especially where Jp
is a large fraction of the total J.

The objective of this paper is to improve the solution developed in this
recent work (Zahoor, 1988) and obtain a more general solution for 1) the
plastic component of the displacement due to the crack and 2) the
J-integral. As a special case, the J-integral estimation solution is then
derived for a material obeying pure power law behavior. Following this, an
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alternative J-integral solution is derived using the assumption that the
crack displacement and crack length terms are separable. Impact of this
assumption on the J-integral solution is assessed.

J-INTEGRAL ESTIMATION METHOD

The J-integral estimation methodology for flawed piping commonly wused with
the load-displacement curve was discussed by Zahoor (1981, 1988). For an
elastic-plastic material and within the context of the deformation theory of
plasticity, the J-integral can be estimated from the load-displacement curve
(Zahoor, 1981, 1988) as

3= 3o+ Jp (1)

where J, is the linear elastic is the

plastic component of J given by

component of the J-integral. J
M
Ip =f[awcp/8(crack area)]| dM
0 M

where ¢, is the plastic component of the pipe bending deflection (rotation)
due to tge crack and M is the applied moment. The 9cp is obtained from
total bending rotation (@) of the cracked pipe as

Ocp = © " Ope - Ynp T Pce (2)

where the subscripts n and c represent pipe bending rotation in the absence
of crack and that contributed by the crack, respectively. The subscripts e
and p denote the elastic and plastic components of the bending rotation.

Figure 1 shows a throughwall crack in a pipe. For this geometry, the change
in crack area is 2mRt-d(@/w). This gives the Jp as

M
Jy = (1/2nRt)~ﬁawcp/a(e/n)]
0

dM. (3)
M

eel

\——- Area = RdOt

Fig. 1. Geometry cf a throughwall crack
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J can be obtained if a
its derivative with respect to crack length
obtaining a solution for @¢p is to
conduct finite element analyses, but this is costly and time consuming and
requires the material stress-strain behavior to be prescribed. In this
paper, solutions for o, and J. are developed in a manner that circumvents
the problem of prescribing the sgress-strain behavior. The Jj solution is
obtained in terms of the bending moment and  @qp- The solution for Jg is
straightforward (Zahoor, 1988, 1985). This paper develops a solution for Jp.

It is clear from the foregoing that a solution for
solution for ., is known and
can be calculateg. An approach for

SOLUTION FOR o
In this section, a solution is developed for the plastic component of the
pipe bending rotation due to the crack (og,). A solution for oy was
developed by Zahoor (1988), where for approximage analysis certain crack
length dependent terms were neglected. Here, this solution is derived
with the objective of retaining all significant crack dependent terms.

The approach used by Zahoor (1988, 1987a) was based on defining the
plasticity contribution from the contained yielding behavior for the crack.
The motivation for this approach was to jdentify important crack length
parameters that influence the o.,. Because only the functional form was
needed, selection of the contained yielding behavior did not imply a
restriction on the resulting solution. It is merely a convenient loading
case for which plasticity behavior can be examined accurately and without
much difficulty.

case is developed from the linear
the crack wunder linear

The solution for the contained yielding
elastic solution. The pipe bending rotation due to
elastic condition (g.e) is given by (Zahoor, 1986)

0o = MBy/(TRZLE') (4)
where
B, = (o/m)2-[19.739 + 103.7A(6/m)1> + 33.433A(8/m)4- 24
+ 166.8302(e/m)3 + 123.9a2(e/m)>- 74
+ 26.298A2(e/m)8-48]. (5)
A = [0.125(R/t) - 0.2510-23 for 5 < R/t < 10
A = [0.4(R/t) - 3.010-23 for 10 < R/t < 20.

The subscripts c and e refer to the contribution due to crack and linear
elastic condition, respectively. The @ce 1is directly proportional to the
applied bending moment. The function Bj depends on the crack size and pipe
radius to thickness ratio. The above solution is recommended for 5 < R/t £
20 and 0< ©/m < 0.55 (Zahoor, 1986).

The contained yielding solution is obtained by accounting for the crack tip
plasticity. This is done by adjusting the crack length in the linear
elastic solution. Using Irwin's suggestion for the plastic zone correction,

the effective crack length is given by

Ogfg/m = ©/m + (l/BﬂzR)(KI/Of)Z (6)
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where B takes a value of 6 for plane strain and 2 for plane stress, and © is
the crack-half angle (a = R®). of is the flow stress usually defined as the
average of yield and ultimate strengths. The definition of of is immaterial
since its value is not needed in the derivation that follows.

The Mode I stress intensity factor is (Zahoor, 1985)

K = (M/wR2t)- (nke) 1/ 2-Fy (R/t,0/m) (7

where

F, = 1 + A[4.5967(8/m)1-> + 2.6422(8/m)4-24].

Substituting (7) into (6), gives
Ogg/m = (8/m)+(1 + By) (®)

where

B, (1/p) - (MFy, /1R2tog) .

The Ocp is obtained from the relation

®cp = Oc,eff ~ Yce

where ¢¢ off is defineg using Og¢¢/T in place of ©/n in By. Using Egs. (4)
and (8) in the above, gives

0cp = (M/TRZE') - By-(2By + B,2)-[1 + £(By, 6/m)] (9)

where the function f in the square bracket is a secondary term and is small
compared to 1. This term can be neglected without loosing accuracy since
only the functional form is desired. It follows from the above that B; and
B, are separable. B, was defined in Eq. (8) and depends on MFy, pipe size,
and material properties. Equation (9) provides a more general result than
that in the work by Zahoor (1988) where (e/n)2 appeared in place of Bj. The
difference between the two solutions can be appreciated by referring to By
and noting that the earlier work ignored the crack length dependent terms
appearing in the square bracket for Bj. For small ©/m, the two solutions
give approximately the same result.

For a given material and pipe size, By depends only on MFy. This simplifies
Eq. (9), giving

0cp = (M/TRZLE')-By-£(M-Fp).

Multiplying and dividing the right hand side of the above equation by Fy and
rearranging terms, gives the solution for @cp:

wcp = Fl(efﬂ, R/t) - g(MFb) (10)

where
¥ (e/w, R/t) = By(e/7, R/t) / Fy(e/m, R/t).

In this result, the crack length term appears with the bending moment in the
g function and also as a separate term in F;. 1In general, Eq. (10) also
contains R, t, R/t, of, and E' terms which are constant for specific pipe
size and material. Consequently, these terms have not been shown explicitly
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but could be included in the g function. This function can be defined
exactly from Eq. (9) if all terms containing B, are retained. The resulting
expression is very complex and need not be presented here because, as shown
by Zahoor (1988, 1987a, 1981), knowledge of the functional form is
sufficient for derivation of the plastic component of J.

It should be observed that the function g(MFb) resulted from B) which
defines the crack associated plasticity. Further, the exact solution for Bj
is immaterial to the final result in Eq. (10). Consequently, the solution
for o. is independent of the plasticity model as long as the plastic
solution depends on the MF term. The solution in Eq. (10) can be applied
to other crack geometries and loading when By and Fy, are used for that crack
geometry. An additional feature of the result in Eq. (10) is that it can be
used for scaling load-displacement curves from different pipe size and crack
lengths when the term MFy in the g function is replaced by Bj.

SOLUTION FOR Jp

The plastic component of J is derived using Eq. (10) in Eq. (3). 1In this
derivation, a solution must be obtained first for the partial derivative of
®cp with respect to ©/m with the bending moment held constant. Using
Eq. (10), carrying out the partial derivative, and following the steps
outlined in Zahoor (1988), gives

amcpla(e/nﬁM = [awcp/anﬁe - M(Fy'/Fp) + ogp(Fy'/Fp) (@89
where
F,' = dF;/d(e/m)
Fp' = dFp/d(e/m).

Substituting (11) in (3) and noting that
mcp-dM = M'wcp - M'dwcp

and rearranging, gives the desired result for the plastic component of J.

(DCP
3, = (1/21Re)-[(B - B) [ Mdogp + BorMocp] (12)
0
where
B = TFy'/Fy
Bo = By'/By - Fp'/Fy
Fy' = AL6.8951(8/m)0-5 + 11.2029(e/w)3-24)
B,'/B, = 2/(8/m) + (8/7)2-B3/B;
By = [155.55A(0/m)0-> + 141.756A(8/1) 324 + 500.49A2(8/m)2

+ 711.186A2(8/m)%- 74 + 223.007A2(8/m)7 -48].

and Fy, and B) are defined in Eqs. (7) and (5).
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The function g does not appear in the J solution. This shows that the exact
solution for g was not needed and only the functional form was sufficient
for derivation of the J-integral. In the above J solution, the integral term
can be interpreted as the arez under the moment (M) versus Pcp curve. This
solution is more general than that developed by Zahoor (1988). If only the
first term in the sum for Bl‘/Bl is retained, then the two solutions become
identical. Table 1 gives B and B¢ values for ©/m values ranging from 0.1 to
0.5 and pipe R/t values of 5, 10, and 20.

Table 1. B and B, values as a function of e/n and R/t

o/ R/t =5 R/t = 10 R/t = 20
B Be B Be B Be
0.10 1.54 20.32 1.91 20.43 269 20.71
0.15 1.74 13.78 2.13 13.94 2.88 14.32
0.20 1.86 10.57 2:22 10.76 2.90 11.21
0.25 1.92 8.67 2.26 8.89 2.86 9.37
0.30 1.95 7.43 2.26 7.66 2.78 8.14
0.35 1.97 6.55 2.25 6.80 2.70 7.26
0.40 1.98 5.90 2523 6.14 2.62 6.58
0.45 1.99 5.40 2.21 5.63 2.55 6.04
0.50 1.99 5.00 2.19 5.22 2.49 5.60

A major feature of this solution is that it requires only one

load-displacement curve (i.e., one pipe test or one finite element analysis
run) for computation of the J,. This Jp when added to the Jg calculated
using Eq. (7) gives the J-Integral. This solution can be applied to a wide
range of crack lengths of practical interest. In contrast to the solution
by Zahoor and Kanninen (1981), the present J solution incorporates the pipe
R/t effects in B and B.. However, as in the previous work, the effects
of pipe R/t are implicit in ¢gp- Equation (12) is valid for portion of the
load-displacement curve that goes not have crack growth. This restriction
is obvious from Eq. (11). Consequently, this solution is valid for
calculating Jp up to the jnitiation of crack growth.

ANALYSIS OF PIPE FRACTURE DATA

The J-integral analyses for initiation of crack growth were carried out
using flawed pipe experimental data. The load-displacement records for
circumferentially cracked throughwall pipes in bending were available from
Kanninen, et al (1982). The tests were conducted on Type-304 stainless
steel pipes at 24C. Experimental data from four pipe tests were analyzed;
this included 51, 102, and 406-mm diameter pipes.

The applied bending moment Versus @ curve was obtained from individual

pipe test data by subtracting the pipe elastic rotation due to crack and the
pipe rotation in the absence of crack. The area under the moment versus
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¢.p Curve gave the integral in Eq. (12). The second term in this equation
was calculated using the point values of the moment and ®qp- The Jp so
calculated was then added to the elastic J, giving the total J.

Table 2. Initiation J values for circumferentially flawed
pipes in bending

Experiment Pipe e/m J at Initiation of Crack Growth, MJ/m?
Number Size Present Zahoor, Zahoor,  NUREG/ Kumar>
mm Work 1988 et al CR-4573 et al
1981 1984
1T 102 0.37 1.38 1.23 1.80 1.17 3.40
2T 102 0.23 1::31 1.07 2.10 -—- 3.25
6T 51 0.23 1.08 1.04 1.50 --- 2.10
8T 406 0.37 6.43 4.50 5.961 4.902  15.79

Result from NUREG/CR-4573 where Zahoor et al (1981) method was used.

25 Average result of four independent finite element analyses, values
ranged from 4.55 to 5.60 MJ/m? (see also Takahashi et al, 1987).

3. EPRI estimation scheme results as reported by Zahoor (1987b).

Table 2 summarizes the J results and includes the pipe test number, pipe
size, and crack length. Here, J values calculated from the solution
developed in this paper are compared with those calculated from other
J-estimation schemes (Zahoor, 1988; Zahoor and Kanninen, 1981; Kumar et al,
1984) and several independent finite element analyses (NUREG/CR-4573,
1986). As shown, the present solution provides an improvement over those
from (Zahoor, 1988; Zahoor and Kanninen, 1981), and is in good agreement
with finite element results. This comparison provides confidence in the
solution developed here. The results from the J estimation scheme of Kumar
et al (1984) which is based originally on finite element analyses differ
from other finite element studies (NUREG/CR-4573, 1986) as evident from
Table 2. This issue is currently receiving close scrutiny in finite element
fracture mechanics studies and in leak-before-break evaluations for piping
systems.

CONSEQUENCES OF ASSUMPTIONS ON J-ESTIMATION SOLUTION

In this section an attempt is made to assess the influence of certain
assumptions on the J estimation solution. The J computations in finite
element studies have been performed using the contour integral based
definition as well as the pseudo-potential energy interpretation similar to
what is wused in the present work. It is in the context of this latter
method an assessment of the assumptions is pursued.

Separability of Crack Length and Qcp

Equation (10) can be expressed in an alternate form as
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M = (1/Fp)- g1lecp/Fy)

where g is some function of the crack length and o¢.,. This relationship
implies that the crack length and displacement are not totally separable.
However, previous J-estimation work on pipe as well as laboratory specimen

geometries assumed that these quantities are separable. If such an
assumption is made in the above relation, then the function g; may be
written as gq(o.,/F}) = gz(wcp)/Fl, where g, is another function that
depends only on ¢.,. In general, the denominator term in the foregoing

equation would appear as some function of F;, but for simplicity such a form
is assumed. This gives the ocp as

ocp = 83(MBy). ' (13)

Noting that the term in parentheses is proportional to ¢, (see Eq. 4), this
result implies that the plastic component is some function of the elastic
component of the displacement. A comparison of this result with that given
by Eq. (10) indicates that the two results would be identical if Fy is
replaced by Bj. With this observation, the J estimation solution is
obtained as

‘Dcp
M-dogp, (14)
0

Jp = (1/2wRt) - (By'/By)

In contrast to the result in Eq. (12), here only the integral term is
retained and B, = O. It is interesting to note that this result is
identical to that obtained from elastic considerations. This implies that
the J can be calculated using ¢, and there is no need to calculate Jg and Jp
separately.

Power Law Hardening Material

The J solutions presented in the foregoing sections are applicable to any
elastic-plastic material since they do not make any specific assumption
regarding the stress-strain behavior for the material. Below, a J solution
is derived for the pure power law material. The impact of separability of
crack displacement and crack length terms on the resulting J solution is
assessed. The stress-strain relation for a pure power law material behavior
may be written as € = ao®, where € and o are strain and stress,
respectively. a is a material parameter and n is the strain hardening index
of the material. This stress-strain relationship was considered by Kumar et
al (1981, 1984) where J estimation solution is given for a variety of crack
geometries and loading. For a pure power law material, the solution for Pcp
may be written as

Ocp = aB3M"? (15)
where B depends on ©/m, R/t, and n. This solution indicates that the crack
length and bending moment terms are separable. Using the solution in
Eq. (15), it can be shown that wcp-dM = (1/n)'M'dmcp. Substituting this
result in Eq. (12), gives

‘Dcp
Jp = (1/27Rt) - (B + B./n) /M'dwcp % (16)
0
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This solution can now be compared with Eq. (14) to assess the impact of
separability assumption. Dividing Eq. (16) by (14) gives the multiplier by

which the two Jp solutions differ for the bending moment loading

Jp Multiplier = (B + Bg/n)/(By'/By) an

It can be shown that the multiplier has a value less than 1. Analyses for

the J, multiplier were carried out for a pipe with R/t = 10, and n = 3 and
10. or n= 3, the multiplier is 0.45 and 0.53 for ©/n value of 0.2 and
0.5, respectively. For n = 10 and same crack lengths, the multiplier is

0.25 and 0.37. For the range of variables just considered, the multiplier
ranges from 0.25 to 0.53.

DISCUSSION

The J-integral estimation solution derived in this paper is applicable to
a wide range of crack lengths. The solution includes the effects of pipe
R/t on the B factors. The solution is most useful for calculating J
directly from the load- displacement curve available from pipe fracture
experiment or finite element analysis. A comparison of two special cases
of this solution with certain additional assumptions indicated that the
solution based on elastic P factor or certain separability assumption may
significantly overestimate the plastic component of J.

The solution presented in this paper is suitable for inferring the materials
resistance to the initiation of crack growth directly from pipe fracture
experiments. J-integral solution suitable for developing J-resistance curve
is currently under development. Solutions for axial tension and combined
tension and bending loading are needed for application to piping systems.
These solutions are currently under development.

It was shown that the solution for ¢ is independent of the plasticity
model employed as long as the plastic soYution depended on LF where L is the
applied load and F is the shape factor appearing in the stress intensity
factor solution. The crack displacement solution developed here also can be
applied to other crack geometries and loadings (Mode 1I) when appropriate F
and B solutions are used. Work utilizing this approach is being carried out
for laboratory fracture specimens (compact tension and three-point bend
bar specimens).

The crack displacement solution developed here can also be used to scale
load vs. load-point displacement curves from different crack lengths and
pipe sizes. This type of scaling has been used successfully for compact
tension and bend bar specimens, and is commonly known as the key curve
method. For flawed pipes, the scaling relationship is obtained directly
from Eq. (10) when all terms in the g function are retained. Eq. (10) in
its more general form is

ocp/F = g(MFy/TR?E).
This result indicates that plotting MFb/nth against wcp/Fl would provide

suitable scaling of data from different crack lengths and pipes of the same
material.

AFR-5—P
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