CREEP-FATIGUE INTERACTION IN AN AUSTENITIC
Fe-Ni-Cr ALLOY AT 600°C

A. Plumtree* and N-G. Persson**

INTRODUCTION

There is a growing interest in and demand for high temperature cyclic data regarding materials used in the power industry. The increased utilization of nuclear energy has emphasized the necessity to acknowledge the effects of cyclic deformation as a compliment to monotonic creep. Hence at high temperatures the interaction of fatigue and creep processes must be considered. Towards this end, a number of studies [1-8] have been carried out using Type 304 stainless steel and Alloy 800. Also, creep-fatigue design rules have been recommended by the American Society of Mechanical Engineers [9]. Although the rules, which imply a linear summation of creep and fatigue damage, were recommended for Types 304 and 316 stainless steels at temperature above 427°C, subsequent work [10,11] has indicated that care must be exercised in applying these design rules.

The present work was carried out to investigate the application of the design rules to fatigue-creep interaction in Alloy 800. The choice of alloy was made because of its engineering importance in the nuclear power industry, the relative lack of high temperature interactive data and its sensitivity to compositional variations [12,13]. This alloy is solid solution hardened by chromium and nickel additions, and the presence of carbon results in further hardening due to the formation of carbides. Provided sufficient stabilizing elements, such as titanium, are present then the formation of chromium carbides will be suppressed. Further high temperature strengthening may be introduced by the precipitation of the intermetallic compound based on Ni$_5$(Al,Ti) and iso-morphous with the face centred cubic matrix, known as γ′, if amounts of titanium and aluminum are present up to the solubility limits. The maximum strengthening by γ′ occurs at around 600°C.

It is evident then that the probability of γ′ precipitation will depend upon the amount of titanium and aluminum remaining in solid solution after the formation of carbides and nitrides and this in turn will play an important role in the high temperature behaviour of the alloy.

EXPERIMENTAL PROCEDURE

Two alloys of type Sanicro 31 (trade name of Sandvik AB) based on Alloy 800 were used in this work and the analyses are given in Table 1. It will be noted that cast no. 5.68342 containing a high Ti/(C+N) ratio (9.5:1) also contained a high (Al+Ti)%(i.e. 1.04%).

**Sandvik, AB, Sandviken, Sweden.
Fatigue 1977, Volume 2

Examples of these alloys were taken from 25mm dia bar stock and cold pilgered to 16mm bar. The material was then solution heat treated at 1120°C for
1h and water quenched. Specimens for cyclic studies were machined with
a diameter of 5.5mm, gage length of 7.5mm and the cyclic tests were
carried out on an electrohydraulic, servo-controlled machine at frequencies
series 0.005Hz and 0.005Hz (202 series only). All these tests were done at
strain range of 1.5%. All tests were conducted using the same setting
and the stress response was monitored continuously.

Standard creep tests were carried out on the same type of specimen with
a similar geometry as the fatigue specimens. All the tests were carried out
at 600°C and one load level corresponding to 250 N/mm². In these
cases, the strain was monitored continually with time.

A series of sequential tests were carried out such that the specimen was
subjected to a predetermined number of cycles in fatigue or time under
process (i.e. creep or fatigue) until fracture occurred. Failure in
fatigue was defined as the number of cycles required for 70% of the
tensile saturation or maximum stress to be reached and creep fracture was
defined as the time for complete separation.

Metallographic examination was carried out using optical and electron
transmission microscopical technique.

RESULTS AND DISCUSSION

Microexamination and Hardness Tests

The results of hardness tests carried out at 600°C on solution heat
treated coupons of each series is shown in Figure 1. The results show
average values of at least five readings. It will be noticed that the
hardness of the high Ti/Cr,Ni ratio 342 series increased markedly
10,000H and then decreased with time. Transmission electron microscopy
within the grains as well as at the grain boundaries. The hardness of the 350
h, and then decreased. Although some precipitates occurred, chromium
and even after fatigue testing, this material had a higher carbide
when compared to the 342 series material.

Basic Cyclic Tests

Figure 2 shows the stress response vs cycles for the uninterrupted (or
basic) cyclic tests. Cyclic hardening was observed, after which satu-
ration occurred, followed by failure. The 202 series specimens tended to
dynamic strain aging behaviour [14]. The 342 series specimens showed a
similar behavior for the 1 and 10Hz frequency tests. No tests at
0.005Hz frequency were carried out on the material. A higher stress
response for a constant strain amplitude resulted in a smaller amount of
plastic strain with an accompanying longer fatigue life.

Part III - Fatigue - Micromechanisms

In general, the 202 series material tended to have slightly longer fatigue
lives for the same frequency, as shown in Table 11. The longest lives were
associated with a frequency of 1Hz. In all cases transcrystalline crack-
ing was observed. The 202 material cycled at a frequency of 0.005Hz
showed a large degree of oxidation in the cracks which could account for
the decreased life at this low frequency [15]. Optical micro-examination
of the surface revealed a relatively coarse slip distribution after
cycling at 10Hz, whereas at the lowest frequency (0.005Hz) and also after
creep testing, slip appeared to be more homogeneous. More uniform slip
could also account for the longer lives at 1Hz [16]. Figure 3 shows an
electron transmission image of the 342 series cycled at 10Hz. The condi-
tions for this image were such that the major dislocations were in
contrast yet the x precipitates were out of contrast. Clustering of the
dislocations should be noted.

Basic Cyclic Tests

The difference in creep behaviour of the 342 and 202 series material can be
seen in Figure 4 for a stress of 250 N/mm². The initial strain in the 202
series specimen was much greater than that for the 342 series specimen.
Such an effect is to be expected since x' precipitates are no longer
prominent in this latter alloy during the equilibration of temperature at 600°C under
zero load conditions prior to starting the test. The 342 material displayed a
much lower secondary creep rate (3 x 10⁻⁶ h⁻¹) compared to 7 x 10⁻³ h⁻¹
(see Figure 4) and relatively little tertiary creep. The fracture elongation
was about 5% for the 342 alloy and approximately 35% for the low Ti/Cr,Ni
ratio 202 alloy. Hence, x' in the high Ti/Cr,Ni ratio 342 material lowered the
creep ductility and the secondary creep rate.

Interaction Tests

The effect of prior creep testing on the cyclic stress response was found to
depend upon the amount of creep damage and the time ratio
t/τ at σ = 250 N/mm². Very little hardening occurred after small
amounts of creep damage (τ/τe < 0.15), no cyclic hardening was seen after
intermediate amounts of creep damage (τ/τe > 0.4) and cyclic softening
took place after large amounts of prior creep damage (τ/τe > 0.6). This
behaviour indicated that the hardening mechanism occurring during
creep (x' and/or carbide precipitation, as well as plastic deformation)
resulted in a similar stress level as that required for high frequency
creep. It is expected that the hardening or softening during cycling is
associated with dislocation multiplication or annihilation, respectiv-
ely.

A significant difference in the deformation mode was observed in the
specimens subjected to prior creep. In this case, a change to homogeneous
slip was noticed.

When creep was imposed first, all the failures were transcrystalline
indicating that time independent damage was the operative failure mech-
anism. It is important to note that only small, minor inter-crystalline
cracks had developed after imposing a creep damage of 0.6.

Prior cyclic straining at high frequency tended to decrease the initial
creep strain and lower the creep rate. As the amount of fatigue damage
(expressed in terms of the cyclic ratio, N/Nc) increased prior to creep
testing, then the initial creep strain decreased. In general, the
effect of prior fatigue appeared to be the same as that due to prior
monotonic (tensile) deformation, which indicates the similarity between these two independent plasticity mechanisms. There was a tendency for relatively high and medium amounts of fatigue damage (N/\(N_F < 0.5\)) to increase the rupture time, thereby enhancing the creep performance. However, when large amounts of prior fatigue damage (N/\(N_F < 0.5\)) were imposed, the presence of small fatigue cracks caused the ensuing creep life to be reduced.

Figure 5 is a transmission electron image of a 342 series specimen subjected to a moderate amount of fatigue damage (N/\(N_F < 0.4\)) prior to creep testing. In comparison with Figure 3 it is apparent that subsequent creep allowed recovery mechanisms to operate and reduce the dislocation density and also enhance the precipitation of \(M_23C_6\)-type carbides. The interaction of these carbides with dislocations can be seen in Figure 5. It is presumed that the presence of a high dislocation density after the fatigue stage, together with the constant load during creep enhanced the precipitation of these fine carbides.

A summary of the effect of sequential fatigue and creep testing for the 342 and 202 series material is shown in Figures 6(a) and 6(b) respectively. The striking feature about both these figures is that enhancement of creep life takes place after moderate amounts of prior fatigue (N/\(N_F < 0.5\)) and that enhancement of fatigue life occurs after each alloy has been prior creep tested to about half life (i.e. creep damage \(1/t\left|_{\text{t}}\right. < 0.5\)). The former effect is due to the introduction of a high dislocation density at the start of the creep test, together with inhomogeneous carbide and some homogeneous \(\gamma'\) precipitation in the case of 202 series material, and \(\gamma'\) with less carbide precipitation in the 342 series material. The latter effect (mentioned above) is caused by homogeneous \(\gamma'\) (principally in the 342 material) and strain induced carbide (in the 202 material) precipitation during the creep stage. This results in an improved cyclic strength. Consequently, the cyclic plastic strain component is lower for a fixed total strain and the fatigue life is increased. In general, Figure 6 indicates that \(\gamma'\) precipitation in the 342 series material is a more potent mechanism than carbide precipitation in the 202 series material for enhancing the fatigue or creep behaviour.

The linear damage summation rule is included in Figures 6(a) and 6(b). For both types of material it appears to be too conservative. Small amounts of prior fatigue and creep brought about microstructural changes similar to those induced by thermal treatment, which improved the mechanical properties. Accompanying work with sequential low frequency (0.005Hz) and high frequency (10Hz) tests on the 202 series material has indicated a similar trend. Relatively followed by high frequency cycling resulted in an enhancement of the large amounts of low frequency damage (N/\(N_F < 0.6\)), high frequency life, in a similar manner to that observed by prior creep testing.

CONCLUSIONS

Simple sequential tests at 600°C involving monotonic creep and high frequency cycling of two types of Sanicro 31 (342 and 202 series) based on Alloy 800 resulted in an enhancement of life. Under these conditions, the linear damage summation rule was found to be too conservative.

The 342 series material containing a high Ti/(C+N) ratio exhibited precipitation hardening which was not apparent to the same extent as in the low Ti/(C+N) ratio 202 series material. Although the cyclic behaviour of the 342 series material was significantly enhanced by prior creep testing, that of the 202 series material was enhanced to a lesser degree by the formation of \(M_23C_6\) carbides.

Prior cyclic deformation tended to improve creep behaviour through the introduction of a high dislocation density, and subsequent \(\gamma'\) and/or carbide formation, provided that no large fatigue cracks formed during the first stage.

ACKNOWLEDGEMENTS

The authors would like to express their thanks to Dr. Roland Kiessling, Vice President, Steel Research and Development, Sandvik AB for permission to publish this work. A. Plumtree wishes to acknowledge the National Research Council of Canada for a grant (A.2770) allowing part of this work to be continued in Canada.

REFERENCES

Table I Chemical Analysis (wt %) of Sanicro 31 (trade name of Sandvik A8) Alloy Based on Alloy 800.

<table>
<thead>
<tr>
<th>Cast No.</th>
<th>C%</th>
<th>N%</th>
<th>Si%</th>
<th>Mn%</th>
<th>P%</th>
<th>S%</th>
<th>Cr%</th>
<th>Ni%</th>
<th>Ti%</th>
<th>Al%</th>
<th>Ti/(C+N) (Al+Ti)%</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.68342</td>
<td>0.043</td>
<td>0.011</td>
<td>0.69</td>
<td>1.16</td>
<td>0.009</td>
<td>0.004</td>
<td>21.1</td>
<td>34.1</td>
<td>0.51</td>
<td>0.53</td>
<td>9.5:1</td>
</tr>
<tr>
<td>7.72202</td>
<td>0.071</td>
<td>0.021</td>
<td>0.60</td>
<td>0.59</td>
<td>0.006</td>
<td>0.003</td>
<td>20.8</td>
<td>31.0</td>
<td>0.41</td>
<td>0.27</td>
<td>4.5:1</td>
</tr>
</tbody>
</table>

Table II Effect of Frequency on Fatigue Life at 600°C ($\Delta e_r = 1.2\%$).

<table>
<thead>
<tr>
<th>Cast No.</th>
<th>Test Frequency ν 0.005 Hz</th>
<th>1 Hz</th>
<th>10 Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.68342</td>
<td>5989</td>
<td>2321</td>
<td></td>
</tr>
<tr>
<td>7.72202</td>
<td>2600</td>
<td>5175</td>
<td>3711</td>
</tr>
</tbody>
</table>

*No tests carried out at this frequency

Figure 1 Age hardening behaviour at 600°C of high Ti/(C+N) [9.5:1] 342 series and low Ti/(C+N) [4.5:1] 202 series Sanicro 31 alloy.

Figure 2 Cyclic Stress Response ($\Delta e_r = 1.2\%$) at 600°C

Figure 3 Transmission Electron Image of High Ti/(C+N) [9.5:1] Alloy After Cycling to Failure at 10 Hz. Test Temperature = 600°C. X20,000.
Figure 4 Creep Curves for Both Alloys Tested at 600°C and a Stress of 250N/mm².

Figure 5 Transmission Electron Image of High Ti/(C+N) [9.5:1] 342 Series Material Cycled to 0.4 Life at 10 Hz and then Creep Tested at 250N/mm² to Failure. Test Temperature = 600°C. X20,000.

Figure 6 Creep (250N/mm²) - Fatigue (10 Hz) Damage Interaction Curves at 600°C.
(a) 342 Series Sanicro 31 Alloy - Ti/(C+N) Ratio = 9.5:1.
(b) 202 Series Sanicro 31 Alloy - Ti/(C+N) Ratio = 4.5:1.