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The purpose of this work is to evaluate the applicability of the Willenborg model 
to predicting residual fatigue life extension in an R3 grade structural steel and a 
7150 T7 aluminum alloy. Compact tension specimens were subjected to a single 
overload during constant amplitude loading and crack propagation rate da/dN 
was monitored as a function of the stress intensity factor range ∆K. The size of 
the delay zone as well as the number of the delay cycles were predicted by the 
model and then compared with the experimental data. Whereas the predicted 
delay zone size was found to be in good agreement with the experimental 
observations, the application of the model to predict the retardation factor may 
lead, depending on the intensity of overloading, to under- or overestimating 
crack propagation rate within the delay zone. This, in turn, could result in an 
imprecise estimate of the delay cycles number and hence of the residual fatigue 
life. 
 
1. Introdution 
 
Structural and mechanical components when in service under cyclic loading may 
be subjected to either variable amplitude loading or occasional overload cycles 
and these load interactions complicate life prediction. However, overload cycles 
of sufficient magnitude can be applied with the purpose of extending fatigue life, 
as they result in a transient retardation in the rate of fatigue crack growth at the 
baseline level [1]. Following an overload cycle, the fatigue crack starts to 
advance into the overload (OL) plastic zone and the residual compressive 
stresses in an element just behind the crack tip are relaxed. This contributes to 
the level of crack closure in the wake of the crack tip, thus retarding fatigue 
crack propagation. As the crack exits the OL plastic zone, the propagation rate is 
generally back again at the baseline level corresponding to the constant 
amplitude (CA) loading [2].  
 
The magnitude and extent of crack growth retardation due to the imposition of a 
single OL during CA cycling are usually measured by parameters such as the 
delay cycles number  Nd  and the delay zone size ∆ad. The first parameter refers 
to the increase in residual fatigue life due to overloading and the second is a 
measure of the OL affected crack length increment along which retardation takes 
place. Both Nd  and ∆ad  can vary depending on load parameters [3]. For 
example, the higher the ratio between the magnitude of the overload and that of 
the CA maximum load, ROL, the more pronounced the crack growth retardation. 
That is, an increase in ROL results in an increase in  Nd  and  ∆ad, as well as in a 
decrease in the minimum da/dN level [3].  For high overloads (ROL = 2.5) the 
initial crack growth acceleration that immediately follows an overload was 
absent and immediate retardation was observed [4,5]. 
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In regard to the effect of the CA load ratio R, defined by the ratio between the 
minimum ( minK ) and maximum ( maxK ) stress intensity factors, crack growth 
retardation was found to decrease with the increase in R. The increase in R was 
also accompanied by a decrease in the fatigue crack length increment between 
the OL application and the occurrence of the minimum da/dN [5-7].  Initial 
growth acceleration was found to vanish and retardation became immediate for 
high R values around 0.6 [6].  Another interesting observation refers to the fact 
that the ratio of ∆ad to the size of an OL plastic zone, developed under plane 
stress conditions, was found to decrease as R increases. Typically, this ratio is 
expected to vary from 3.5 at  R = 0.1  to values ranging between 0.2 and 0.3 for 
R = 0.45. That is, depending on loading conditions, the delay zone size can be 
much larger or smaller than the OL monotonic plastic zone size calculated for 
plane stress conditions [4,6,8]. 
 
In addition to the loading parameters, material properties also have a 
considerable bearing on fatigue crack growth retardation following a single 
overload. Several works [9,10] have shown that the higher the yield stress, the 
more short-termed becomes the overall retardation effect.  
 
Starting early seventies, a large number of models which incorporate interaction 
effects have been introduced for predicting fatigue crack growth under variable 
amplitude (VA) loading [11-17]. These models are characterized by introducing 
crack tip plasticity effects and they comprise three distinct groups. The yield 
zone models are based on considerations on the size of monotonic plastic zone 
created at the crack tip due to an OL and do not take into account plasticity 
induced crack closure due to the imposition of the overload. Crack closure 
models, on the other hand, represent an improvement of the more primitive yield 
zone models and take into consideration the closure behavior based on crack 
closure measurements made during CA loading [18]. Assumptions are then made 
about the crack closure behavior under VA loading. In the more sophisticated 
strip yield models, the occurrence of plasticity induced crack closure is 
calculated rather than estimated from measurements made during CA loading 
[18]. 
 
The present study has the purpose of applying the Willenborg model, which 
belongs in the yield  zone models, in order to predict fatigue life extension due to 
a single overload cycle applied at a given crack length during CA loading. The 
materials chosen for carrying out the fatigue tests were an R3 grade structural 
steel largely used for fabricating offshore mooring chains and a 7150 T7 
aluminum alloy developed for aeronautic applications. The study was motivated 
by the simplicity of the model in question and was primarily aimed at comparing 
the delay parameters predicted by its application with experimental data. 

 
2. Basic Feature of the Willenborg Model 
 
The model proposed by Willenborg [13] is based on the assumption that crack 
growth delay after an OL is due to a reduction in Kmax, corresponding to the 
current crack length. According to the model, the reduction in  Kmax, Kred, is 
given by [13]: 
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                                                   Kred = Kreq - Kmax                                               (1) 
 
where  Kreq  is the stress intensity factor necessary to produce a plastic zone that 
extends a distance λ ahead of the advancing fatigue crack tip, to the far edge of 
the OL plastic zone, as presented in Fig. 1. Under plane stress conditions, Kreq at 
a given crack length a can be determined from the expression: 
 
                                                    πλσ YreqK =                                                 (2) 
 
where λ , as shown in Fig.1, is given by:  
 
                                              λ = 0a  + (r p ) OL  - a                                             (3)  
 
where 0a  is the crack length at which the overload was applied and  (r p ) OL  is 
the corresponding plastic zone size that can be calculated for plane stress 
loading, using the following expression: 
 

                                              (r p ) OL  = 
π
1 (

Y

OLK
σ

) 2                                             (4) 

 
where OLK  is the OL stress intensity factor calculated according to literature 
[12,19]. 
 

 
Figure 1. Plastic zone size definitions used in the model of Willenborg, 

corresponding to a generic cycle i [18]. 
 

Taking into account the reduction in the stress intensity factor due to 
overloading, one can define effective values of  Kmax  and  Kmin  as follows: 
 
                                              Kmax,eff  =  Kmax – Kred                                            (5) 
 
                                               Kmin,eff  =  Kmin – Kred                                            (6) 
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From the effective stress intensity levels given above, one can, in turn, define in 
the usual manner the effective stress intensity factor range, ∆Keff, as well as the 
effective stress intensity factor ratio Reff. At this point, it is important to note that 
Eqs. (5) and (6) indicate that ∆Keff  is equivalent to ∆K. However, according to 
the Willenborg model, negative values of  Kmin,eff  should be taken as null and  
∆Keff  becomes equal to  Kmax,eff  in this case. 
 
Knowing ∆Keff  and Reff, the fatigue crack propagation rate  (da/dN)VA  within the 
delay zone can be estimated and then related to the corresponding propagation 
rate at the baseline level (da/dN)CA by the retardation factor γ  defined as: 
 
                                            (da/dN)VA  = γ (da/dN) CA                                         (7) 
 
Fatigue crack growth rate under CA loading can be predicted from the relation 
proposed by Forman and co-workers [20], as shown in Eq. (8):  
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where  C  and  n  are the Paris law material constants and  Kc  is the material’s 
toughness. 
 
Within the delay zone that follows the application of an OL, the crack 
propagation rate  (da/dN)VA  can be calculated by substituting  ∆Keff  and  Reff  for  
∆K and R in Eq. (8). After passing through the minimum that follows an 
overload, the retardation factor γ  starts to increase and eventually becomes equal 
to unity, thus restoring the propagation rate back to the baseline level at the end 
of the delay zone. The basic feature of the Willenborg model, therefore, refers to 
the fact that crack growth retardation, which follows overloading, ends when the 
values of  ∆Keff   and  Reff  converge to those of  ∆K  and  R. The current crack 
length, a*, at which such convergence takes place can thus be determined and the 
delay zone size *

da∆  will be given by the difference between  a*  and  a0. 
 
Based on Eq. (8), (da/dN)CA  and  (da/dN)VA can be calculated and the delay 
factor  γ  for a given crack length  a  can, therefore, be expressed as: 
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3. Materials and Experimental 
 
The materials used for this investigation were an R3 grade structural steel and a 
7150 T7 aluminum alloy. The steel, which contains, in weight percent, 0.26% C, 
1.2% Cr, 1.75% Mn, 0.35% Ni, was received in the form of hot rolled round bars 
of circular cross section with a nominal diameter of 85 mm. The aluminum alloy 
was received in the form of an extruded T-profiled rod containing, in weight 
percent, 6.6% Zn, 2.3% Mg, 2.1% Cu, 0.1% Zr, 0.05% Fe, 0.05% Ti, 0.03% Si 
and traces of Mn and Cr. 
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Compact tension (CT) specimens were machined from the as-received steel bars 
along the L-T orientation, in accordance with the ASTM E647-99 
recommendation [19]. A number of CT specimens were also machined from the 
steel after it was heat treated by austenitization at 900ºC during 90 minutes, 
followed by water quenching and then tempering at 600ºC for 90 minutes. Other 
CT specimens were cut off from the as-received aluminum alloy along the rod´s 
L-T orientation, according to the same ASTM recommendation. The study was, 
therefore, carried out contemplating three different microstructures: as-received 
(SA) and heat treated (SH) R3 grade steel, as well as extruded 7150 aluminum 
alloy (AL). Table 1 indicates the yield stress (σY) and fracture toughness (Kc) as 
determined for the 8 mm thick CT specimens. It is clear from this table that, 
whereas Kc values of the aluminum alloy satisfy the ASTM criterion for plane 
strain conditions, this is not the case for the steel in both conditions. 
 

Table 1. Materials properties 

Material σY (MPa) Kc (MPa m ) 

SA       530 101 

SH       545 109 

AL       565 24 
 
The specimen width (W) and specimen thickness were taken as 32 and 8 mm, 
respectively, and a starter notch was machined to a depth of 7 mm. The specimen 
surfaces were polished and fine lines were drawn parallel to the specimen axis in 
order to facilitate monitoring crack growth during cyclic loading. Finally, the CT 
specimens were precracked to a total crack length-to-specimen width ratio, a/W, 
of about 0.27. 
 
CA cyclic loading was applied to the precracked specimens so as to obtain the 
typical da/dN versus ∆K curves for the materials in question. The tests were 
performed at room temperature using a servo-hydraulic machine, operated at a 
frequency of 20 Hz. The CT steel specimens were submitted to a tension-tension 
mode I loading with a maximum load of 9 kN and a load ratio of 0.33. For the  
aluminum alloy specimens, the maximum load was taken as 2.1 kN and the R 
ratio as 0.3. Fatigue crack length was monitored using a traveling microscope. 
  
Overload cycles were applied manually under load control at an a/W equivalent 
to 0.33 and 0.4 for the steel and aluminum alloy specimens, respectively. The 
overload ratio ROL, defined by  KOL / Kmax  [21], was taken as 1.5 and 1.8 for the 
steel and 1.5, 1.75 and 2 for the aluminum alloy.  

 
4. Results and Discussion 
 
Following the application of single overloads during CA fatigue testing, the 
maximum retardation in crack propagation is reached only after a small crack 
length increment [18]. After passing the point of maximum retardation, defined 
by γ = minγ , da/dN starts to increase and eventually returns, over some crack 
extension da∆ , to the normal growth rate at the CA baseline level. The values of 
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da∆ , together with those of minγ , are presented in Table 2 for the test conditions 
considered in this work. The numbers listed in this table indicate, as one may 
expect, that an increase in the overload ratio is associated with an increase in 

da∆  and a decrease in minγ . This, in turn, is reflected, as Table 2 indicates, in an 
increase in the delay cycles number Nd and hence in the residual fatigue life. 
 

Table 2. Delay parameters determined for the different test conditions   

   Material       ROL    minγ   da∆ (mm) (r p ) OL (mm) Nd 

   SA       1.50    0.39         1.50          3.60 10160 

       1.80    0.20 2.00          5.16 26740 

  SH       1.50    0.52 1.30          3.39 10880 

       1.80    0.21 2.00          4.88 30370 

       1.50    0.20 0.20          0.25 4660 

   AL       1.75    0.12 0.26          0.34 7640 

       2.00    0.04 0.36          0.44 18007 
 
The values of the corresponding OL plastic zone size, calculated using Eq. (4), 
are listed in Table 2, for the purpose of comparison with those of da∆ . At this 
point, it is important to mention that, as the measurements of crack length were 
made on the specimen surface, the use of Eq. (4), which corresponds to plane 
stress condition, is considered to be appropriate. As can be verified from the 
same table, the ratio between da∆  and  (r p ) OL  varies between 0.38 and 0.41 for 
the steel specimens that were fatigue tested at an R ratio of 0.33. This is seen to 
be in agreement with published data [4,6,8] where da∆ was reported to be 20 → 
30% the size of the overload plastic zone for  R  equal to 0.45. For the aluminum 
base alloy, on the other side, an  R  ratio of 0.3 was adopted for fatigue testing 
and this implied in a da∆ / (r p ) OL  ratio varying between 0.76 and 0.81, which is 
considered in fair agreement with what is reported in the literature [4,6,8]. 
 
Another observation worthy of mentioning refers to the fact that the heat 
treatment, to which the steel was submitted, results in a decrease of the delay 
zone size da∆ . Presumably, this can be attributed to the increase in the yield 
stress of the material, implying in a more short-termed retardation effect [9,10]. 
 
4.1 Application of the Model 
 
The application of the Willenborg model is based on determining the crack 
length a*, at which ∆Keff  and Reff  converge to ∆K and R. The values of  a* thus 
obtained are presented in Table 3, for the test conditions considered in this study.   
 
The corresponding ∆K value, denoted ∆K*, the extent of the delay zone *

da∆  and 
the experimental counterpart da∆  are also presented in Table 3. As this table 



 7

indicates, *
da∆  agrees fairly well with ∆ad and hence one may use the 

Willenborg model to predict the extent of the delay zone resulting from 
overloading. In regard to the retardation factor, as predicted by the model, the 
values of γ  can be calculated from Eq. (9), taking the Paris law exponent as 2 
and 3.8 for the steel and aluminum base alloy, respectively. 
 

Table 3. Values of  a*  and  ∆K*  as predicted by the Willenborg model  

Material ROL a* (mm) ∆K*(MPa m ) *
da∆  (mm) da∆  (mm) 

SA 1.50 12.00 28.31 1.50 1.50 

 1.80 13.10 30.85 2.60 2.00 

SH 1.50 12.00 28.31 1.50 1.30 

 1.80 13.10 30.85 2.60 2.00 

 1.50 12.94 7.46 0.14 0.21 

AL 1.75 13.03 7.51 0.23 0.28 

 2.00 13.10 7.56 0.30 0.36 
 
Examples of the comparison of the predicted cγ values with those experimentally 
detected eγ  are shown in Table 4 for the SA, SH and AL test conditions, 
corresponding, respectively, to overload ratios of 1.5, 1.8 and 2. One can observe 
the good agreement between cγ  and eγ  values for ROL of 1.5. However, for 
higher overload ratios, cγ  is seen to be generally lower than its experimental 
counterpart  eγ  and, as expected, they both converge to unity as the fatigue crack 
heads towards the end of the delay zone. 

 
At this point one should mention that the results obtained in the present study 
indicate that the relationship between  cγ   and  eγ   as described above is in fact 
typical of the steel behavior for the different test conditions. In regard to the 
aluminum alloy, the application of the Willenborg model for the lower ROL ratios 
results in understimating the retardatin effect, giving rise to higher cγ  in 
comparison to those of eγ . Accordingly, it can be concluded that the 
applicability of the Willenborg model to predicting the retardation factor 
following overloading depends on the magnitude of the applied overload. 

 
4.2  Prediction of the Residual Fatigue Life Extension 
 
The extension of the residual fatigue life due to the application of a single 
overload can be estimated from the expression:  
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where Nd* is the delay cycles number and  a*  the crack length at which the 
crack propagation rate is restored back to the base line level. Knowing the values 
of (da/dN)CA at different crack length increments within the delay zone, one can 
numerically evaluate the integrals in the above equation and hence calculate Nd*. 
 
Table 4. Experimental and Willenborg-predicted values of the retardation factor  

       Material ROL a (mm) (da/dN)CA cγ  eγ  

  10.5 8.0x10-4 1 1 

SA 1.5 11.0 8.2x10-4 0.39 0.39 

  11.5 8.7x10-4 0.72 0.72 

  12.0 10-4 1.00 1.00 

  10.5 6.6x10-5 1.00 1.00 

  11.0 7.1x10-5 0.21 0.21 

  11.5 9.4x10-5 0.23 0.34 

SH 1.8 12.0 10-4 0.56 0.87 

  12.5 1.1x10-4 0.70 0.90 

  13.0 1.3x10-4 0.95 0.95 

  13.1 1.3x10-4 1.00 1.00 

  12.80 4.54x10-5 1.00 1.00 

  12.94 5.38x10-5 0.04 0.03 

  13.00 5.74x10-5 0.19 0.52 

AL 2.0 13.02 5.86x10-5 0.31 0.64 

  13.04 5.98x10-5 0.48 0.76 

  13.06 6.10x10-5 0.61 0.84 

  13.10 6.34x10-5 1.00 1.00 
  
Based on the data presented in Table 4, delay cycles numbers of 11772, 50287 
and 51314 were obtained for the test conditions indicated in the table. 
Comparing these numbers with their respective  Nd  values listed in Table 2, one 
can conclude that the Willenborg model is fairly precise in predicting residual 
fatigue life extension at ROL = 1.5 and up to 1.75 for the aluminum alloy. For 
higher ratios, though, the use of the model implies in overestimating the delay 
cycles number, in virtue of the low predicted values of cγ . A complete 
comparison between  Nd  and  Nd* is presented in Table 5, for all the conditions 
in question. 
 
 
 
 
 
 



 9

Table 5. Experimental and predicted values of the delay  
cycles numbers  

Material ROL Nd Nd* 

SA 1.5 10160 11772 

 1.8 26740 53916 

SH 1.5 10880 8105 

 1.8 30370 50287 

 1.50 4660 3330 

AL 1.75 7640 5347 

 2.00 18007 51314 
 
5. Concluding Remarks   
 
The purpose of the present work was to evaluate the applicability of the 
Willenborg model to predicting fatigue crack growth retardation in structural 
materials. From what is presented above, the following remarks can be made:  
• An increase in the overload ratio during CA loading results in a more 
effective crack growth retardation as evidenced by the increase in the extent of 
the delay zone and by a decrease in the retardation factor.  
• The extent of the retardation zone predicted by the Willenborg model agrees 
fairly well with the experimental observations. 
• The applicability of the model to predicting the retardation factor depends on 
the level of overloading. While, in the present study, this prediction was found to 
be fairly precise for an overload ratio of 1.5, the model overestimates the 
retardation effect due to higher overload ratios of 1.8 for steel and 2 for 
aluminum base alloy. 
• The delay cycles numbers predicted by the model were found to be in fair 
agreement with those observed experimentally for the low overload ratio (ROL = 
1.5). The model, though, overestimates residual fatigue life extension for higher 
overload ratios of 1.8 for steel and 2 for aluminum base alloy. 
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