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Abstract- A new model is presented for analyzing the stress concentration of 

unidirectionally reinforced fiber composite. The present model is based on variational 

theory. The stress components are derived in terms of a perturbation function. A 

parametric study of stress concentration factor (SCF) of the unidirectionally 

reinforced fiber composite is carried out. In order to validate the present model, the 

numerical results from the present work compare with those obtained from the shear 

lag model. There is a good agreement between the results obtained by the two models.  
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1 Introduction 

Having better stiffness, strength and impact resistance, reinforced fiber composite 

material has been widely using in the aerospace, automobile, marine industries and 

civil structures. The longitudinal tensile failure of unidirectionally reinforced fiber 

composite material is complex. Initially all fibers are intact and able to carry load. 

With the increase of tensile load, a fiber first breaks at a weakest point. This break is 

at random position, and is due to flaws. Fiber break creates stress concentrations in 

the adjacent fibers. The stress concentrations may cause the progress failure of fibers 
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and eventually the failure of the whole composite. The stress concentrations are 

affected by many factors such as the spacing of the fibers, the elastic properties of 

fiber and matrix, the characteristic of fiber/matrix interface, and so on. It is important 

to investigate the effects of these factors on the stress concentrations around fibers 

break in unidirectionally reinforced fiber composite. 

Predicting the fracture behavior of unidirectionally reinforced fiber composite has 

been trackled in several ways including full elasticity solutions for idealized cases, 

various models that build on classical shear lag analysis and finite element methods. 

The shear lag model was developed by Cox,[1] Hedgeprth,[2] and Greszczuk,[3]. Fukuta 

and Kawata,[4] incorporated the material properties of fiber and matrix into the 

calculation of the SCF. Wagner and Eitan,[5] defined an effective radius around the 

fiber break to calculate the SCF. Grubb et al,[6] modified Wagner and Eitan’ model. 

They uesed the experimentally determined fiber/fiber interaction radius to calculate 

the SCF. In the past years, 2D and 3D finite element computations have been done in 

sveral studies,[7,8] to analyze the stress concentrations caused by a fiber break. These 

calculations allow us to correctly evaluate the stress concentrations. 

However, alomost all the analysis on the stress concentration around fiber break in 

unidirectionally reinforced fiber composite built on the shear lag theory. In the present 

work, the stress concentration is studied by using the variational theory. The 

influences of the spacing of the fibers, the elastic properties of fiber and matrix to the 

stress concentration of unidirectionally reinforced fiber composite caused by fiber 

breaks are investigated in the paper. 
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2 Theoretical modelling 

The model of a 2D unidirectionally reinforced fiber composite studied in this paper 

is shown in Fig.1. Φ  and s  denote the fiber radius and the inter-fiber spacing, 

respectively. The length of the lamina is denoted by L . The origin for the rectangular 

Cartesian coordinates ( )yx,  is selected to the mid-way of the lamina. From the 

symmetry, it is only necessary to consider a quarter ( )0,2/0 ≥≤≤ yLx  of the 

lamina as illustrated in Fig.2, which can be divided into four regions. Region Ⅰand 

Region Ⅲ are the fiber areas. Region Ⅱand Region Ⅳ are the matrix areas. 

In the present work, we assume that the normal stress component in the 

longitudinal direction of the present model is of the form: 

  5.00    ,5.00        )()()()(
00

Φ≤≤≤≤+= ΙΙΙ yLxxxxxxxx ψσσσ              (1) 
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syLxxxxxxxx +Φ≤≤Φ≤≤+= ΙΙΙΙΙΙ ϕσσσ        (2) 

sysLxxxxxxxx +Φ≤≤+Φ≤≤+= ΙΙΙΙΙΙΙΙΙ 5.15.0  , 5.00       )( )()()(
00
ϕσσσ      (3) 

sysLxxxxxxxx 25.15.1   , 5.00       )( )IV()IV()IV(
00

+Φ≤≤+Φ≤≤+= ϕσσσ    (4) 

where )(  and  )( xx ψϕ  are unknown functions which needs to be determined and 
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are the longitudinal normal stress components of the fiber and matrix in the lamina 

under the tensile load xN . Here, fE  and mE  are Young’s moduli of the fiber and 

matrix. 

Along the line of Hashin, McCartney and Gao’s analysis [9-11], the relation between 
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)(  and  )( xx ψϕ  is determined using the global equilibrium condition 
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Substituting Eqs.(1)-(6) into Eq.(7) yields 
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  For the plane problem, the equilibrium equations of the lamina are 
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Substituting Eqs.(1)-(4) in Eq.(9a), xyσ  is obtained by integration 
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where )(),(),(, )( 4321 xfxfxfxf  are unknown functions. 

Inserting Eqs.(10)-(13) into Eq.(9b) yields 
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where )(),(),(, )( 4321 xgxgxgxg  are unknown functions. 

The boundary conditions for the quarter of the lamina shown in Fig.3 include the 
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traction-free conditions on the top surface: 

( ) ( )   0,, )V()V( == ΙΙ hxhx xyyy σσ                    (18a,b) 

where sh 25.1 +Φ=  

The symmetry condition in the middle plane: 

 0)0,()( =Ι xxyσ                          (19) 

The traction-free conditions on the crack surface: 
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The traction continuity conditions on the interface Φ= 5.0y : 

        ,)5.0,( )()()()( ΙΙΙΙΙΙ ==Φ xyxyyyyy x σσσσ                  (21a,b) 

The traction continuity conditions on the interface sy +Φ= 5.0 : 
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The traction continuity conditions on the interface sy +Φ= 5.1 : 
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Then, the unkown functions )(),(),(, )( 4321 xfxfxfxf )(),(),(, )( 4321 xgxgxgxg  

can be determined by the boundary and continuity conditions.  

Substituting Eqs.(1)-(4) into Eqs.(20a,b) yields 

0)
2
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1)
2

( −=
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The influence of the fiber break to the stress distributions on the left surface is not 

obvious for a high ratio Φ/L . We assume 

( ) ( ) ( ) 0,0 ,,0,0
0

== yyy xyxxxx σσσ            (25a,b) 

Substituting Eqs.(10)-(13) into Eqs.(25a,b) yields 
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0)0( =′ϕ                            (26) 

0)0( =ϕ                            (27) 

For no displacement boundary part, the complementary energy is 
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Taking the first variation of Eq.(39), we have 

[ ] dxxbxaxaxa
L

Lc )()()()(
2/

2/ 002
)4(

4 δϕϕϕϕδ ∫− ++′′+=Π             (29) 

where constants 024 ,, aaa  and 0b  are given in Appendix A.  

According to the principle of the minimum complementary energy, the total 

complementary energy c∏  is required to satisfy the equation 

[ ]     0)()( =Π=Π xcijc ϕδσδ                   (30) 

Applying Eq.(29) to Eq.(30), a fourth-order ordinary differential equation is obtained 

      0)()()( 002
)4(

4 =++′′+ bxaxaxa ϕϕϕ               (31) 

Eq.(31), together with the boundary conditions listed in Eqs.(23)-(24) and 

Eqs.(26)-(27), define the boundary value problem for determining )(xϕ . With the 

function )(xϕ  determined, the stress field and the stress concentration factor can 

then be obtained. In the present work, the SCF, K , is defined as the ratio between the 

local stress and the applied stress in the fiber far away from the break site: 

applied

localK
σ
σ

=                          (32) 

3  Results and discussion 
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In the following, the results predicted by this variational solution are presented. 

From the model, the SCF appears to a function of the inter-fiber spacing and the 

moduli of the fiber and matrix. 

Fig. 3 shows the SCF in the break fiber and an intact fiber immediately adjacent to 

the break fiber with different inter-fiber spacing. The SCF is plotted against position 

along the fiber. From Fig. 3, it can be seen that an increase of inter-fiber spacing leads 

to a decrease of both the ineffective length in the break fiber and positively affected 

length in the adjacent fiber. Fig. 4 shows the influence of the inter-fiber spacing on the 

maximum SCF. It can be seen that the maximum SCF decreases proportionally from a 

value of 1.49865 at an inter-fiber spacing of φ2.0  to a value of 1.4158 at an 

inter-fiber spacing of φ15 . Similar observations were reported by Grubb et al.[7] and 

Fukuda et al.[8]. 

4 Conclusions 

 In this work, the variational theory is used to perform micromechanical analyses 

to determine the SCF of unidirectionally reinforced fiber composite due to a fiber 

break. Using the variational solution, the stress components are derived in terms 

of a perturbation function, which is governed by a fourth-order ordinary 

differential equation. The influences of the inter-fiber spacing, the elastic 

properties of fiber and matrix to the SCF are investigated. The SCF is found to 

increase with a decrease of the inter-fiber spacing. 
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Fig.4 Influence of inter-fiber spacing on the maximum SCF in a fiber 
adjacent to a break fiber 
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