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Abstract  

Fracture toughness of particle reinforced polymers is strongly affected by the size of 
particles. It can be improved or reduced depending on the materials used and the volume 
fractions at which the values are compared.  Dissipation mechanisms, as particle 
debonding and subsequent yielding of the polymer, are responsible for the characteristic 
behaviour.  If the debonding energy per volume is considered it can be concluded that 
smaller particles are favourable for this value. But the product of the specific debonding 
energy with the dissipation volume is the decisive quantity. Depending on the used 
debonding criterion, i. e. stress or energy, different conclusions can be drawn. The energy 
criterion leads to the conclusion that the debonding process inducing fracture toughness 
independent of particle size, however, the stress criterion at the interface supports the 
conclusion that smaller particles increase facture toughness.  

1. Introduction  

Throughout the last 40 years the subject of improving the mechanical properties of 
particle filled polymers received large attention and a bulk of publications exists. A 
survey about this development has been given recently and the reader is referred to [1]. In 
general, the addition of a hard particle component to a polymer matrix leads to an 
embrittlement of the resulting composite, if the stress-strain response is considered. It 
shows a tendency to a reduced necking behaviour with increasing particle volume fraction 
compared to the bulk matrix. However, if fracture toughness is considered the behaviour 
is more complex and an increase of fracture toughness with increasing volume fraction of 
hard particles can be observed. Interfacial debonding determines the initiation and 
development of the damage process. For glass bead filled epoxies Lee and Yee [2], [3] 
observed that micro cracking is mainly caused by debonding. However, it was observed 
that it is limited to a region near the fracture surface and does not occur in a large 
dissipation zone around the propagating crack. Yielding processes, as diffuse shear 
yielding and microshear banding, are addressed to be more important for toughening of 
such composites. Recently Chen et al. [4] examined the influence of particle size on 
damage dissipation in nanocomposites. They concluded on the basis of an energy 
debonding criterion that damage dissipation is strongly dependent on the size of particles 
and that smaller particles are favourable to increase material toughness. But dissipation 
energy per volume is only one side of the story. The other important point is: how large is 
the volume in front of the crack where debonding can be initiated, i.e.: Where the stress or 



energy is high enough to debond the particles from the surrounding matrix. A simple 
geometrical model of particle-particle interaction and a regular particle arrangement is 
used to consider these points.   

2. Fracture toughness  

To initiate the propagation of an existing crack, energy must be available. The energy 
release rate G (available from the change of the elastic energy and the applied load for an 
increment of crack growth) must at least be equal to the energy necessary R (crack 
resistance) to initiate crack propagation. This is expressed usually as: G =Gc = R (1)  

with Gc as fracture toughness of the composite (all these quantities as energy per unit area 
of crack growth). In order to balance the effect of different structural changes on the crack 
resistance it is necessary to consider the processes near the crack tip in more detail. The 
fracture processes act in different zones: there are processes immediately near the crack 
surfaces, which is termed as process zone. The second group are the more extended 
structural processes, which take place in the so-called dissipation zone. These zones are 
given in Fig. 1. This kind of subdivision of the region in front of the crack can be traced 
back to the works by Evans and Faber [5]. The total crack resistance can be calculated by 
the separate contributions of the mechanisms in the process and dissipation zones, as:  
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where the numbers 1 and 2 stand, for example, for particle/matrix debonding (i=1⇒d) 
and matrix yielding processes (i=2⇒my), ρis the distance  
from the crack tip, ρi are the dissipation zone radii of the processes (i).  

 



Fig. 1. Dissipation and process zones in front of a crack; radius of debonding zone ρd and 
matrix yielding zone, ρmy.  

In the summation it is assumed that the different processes do not influence each other 
directly; indirectly it is considered via reductions of volume fractions, for example during 
unloading processes caused by debonding. For the calculation of the dissipation radii the 
approximation for the plastic zone is extended to several energy dissipation mechanisms:  
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where Ec is the Young’s modulus of the composite, and ε
i

c 
is the local strain in  

the composite in front of the crack when the material instability (i) initiates, the parameter 
β can be used as a fitting parameter. Inserting Eq. (3) into (2) provides for the crack 
resistance:  
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3. Micromechanical model for particle-particle interaction, debonding criterion  

Incorporation of particles into a matrix causes stress concentrations in the neighbourhood 
of the particle when the composite is under loading. The two-particle arrangement is the 
typical geometry that should allow describing the main features of the mechanical 
problem and a simple arrangement was proposed by Evans [6]. The typical situation is 
shown in Fig. 2; the particles are assumed to have a mean diameter of d and a centre-to-
centre distance of r and behave elastically. For the matrix material elastic-plastic material 
behaviour is assumed.  

 

Fig. 2. Representative element for the analytical modelling of local deformations;  



d-particle diameter, r-centre to centre distance, σc,εc -applied stress  

and strain, respectively, debonding of one particle in a pair.  

During loading of this element, the gap (or ligament) between the particles is  
under maximum deformation that finally reaches a critical value, ε

d 
, where debonding 

starts at one of the particles. It is assumed herein that the initiated debonding crack 
extends all around this particle at this applied load. The debonding leads subsequently to 
the unloading of the matrix material in the ligament. On the other hand this causes higher 
loadings in the neighbourhood of the ligament region. The radial, elastic deformation of 
the matrix in the ligament is approximately given by:  
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with the normalization r =r / d and abbreviation α=
r
.  

r −1 As can be seen from this 
equation, the strain concentration becomes highest when particles are very close to each 
other. This leads directly to the critical strain or stress criterion. When the matrix 
deformation reaches a critical value debonding starts: εm =: εd or σm =: σd (6)  

with εd as the debonding strain or σd the debonding stress (radial stress at the 
particle/matrix interface), respectively. Usually the bonding quality in particle reinforced 
polymers is not very high, so it is assumed herein that debonding starts before matrix 
yielding: σd ≤σmy and εd ≤εmy , with σmy and εmy as the matrix  

yielding stress and strain, respectively.  
Nicholson [7] considered the problem of particle debonding from a surrounding matrix. 
He obtained on the basis of an energy consideration (where the deformation energy of the 
particles is neglected) the following relation of the critical applied stress on a 
representative element for debonding at the particle/matrix interface:  

 16γdEm(1+νm ) (7)
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d with Em and νm as the matrix modulus and Poisson’s ratio, 
respectively, 2 γd, is the specific debonding energy for the two newly created surfaces.   
For the determination of the debonding stress at the particle surface, the stress 



concentration: σm =k⋅ σc
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,d  must be considered. However, it becomes clear that  

smaller particles demand higher local stresses for debonding to be initiated.  Similar 
results where derived by Chen et al. [4]. The authors considered particle deformation and 
obtained for the local (radial) debonding stress at the interface:  
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where the “adhesion energies Wa “of that papers is replaced herein by 2γd.  
Thus instead of the debonding stress criterion (6) the following energy criterion  
can be used:  
σm =:σd 

γ 
(9)  

The main difference, which has considerable consequences on the structure of the  
 
modelled fracture toughness, is that Eq. (6) provides an experimentally determined value 
that is of course dependent on the debonding energy but no dependence on the particle 
diameter was observed until now in experiments. However, Eq. (9) with Eqs. (7) or (8) is 
explicitly dependent on specific debonding energy, particle diameter and mechanical 
properties of the polymer. During the production process of particle reinforced polymers 
the particles are distributed within the matrix. The common aim is to reach a 
homogeneous distribution without agglomeration of particles. As a first approximation 
and without loss of relevance for the considered problem, it is assumed that the particles 
are periodically arranged in a cubic lattice and the strain concentration factor α can be 
easily calculated. It depends only on the ratio of the interparticle distance to the particle 
diameter, and this value is related to the particle volume fraction; for this arrangement it 
is:  
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4. Results of fracture toughness modelling  



On the basis of a cubic arrangement it should be possible to explain the typical dissipation 
processes within the process and dissipation zones. The situations of the dissipation and 
process zones for static loading is sketchedin Fig. 3 for the case that debonding is initiated 
before matrix yielding:  
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Fig. 3.  Debonding and matrix yielding within the process zone (right below) and the 
same processes within the dissipation zone for a cubic lattice particle 
arrangement.  

Experimental examinations of the fracture process may show that debonding is limited to 
the very near region around the propagating crack. Then failure is determined by particle 
debonding in the crack plane and subsequent matrix yielding. In this case the process 
zone energy of debonding is given by:  
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where the first factor two considers both of the newly created surfaces, the factor two in 
the denominator considers that only one half of the particle’s surface debonds and the last 
factor is the number of particles per crack plane. Here it is assumed that all particles 
crossing the crack area are debonded no matter how large (mean diameter) they are. This 
is reasonable because immediately in front of the crack the elastic stresses are very high, 
and as assumed debonding starts before yielding. The crack meets already debonded 
particles, moves around them and fractures the matrix bridges, this leads to the following 
process zone energy:  

my 

qpz =2 ⋅ γm ⋅  (1− v) (12)  

where it is assumed that the local behaviour equals the crack resistance of the bulk matrix, 



2γm.  
Finally, with the basic relation (2), Eq. (12) and ρ

d
,ρ

my 
≈0 the crack resistance is  

obtained:  
R =4 ⋅ v ⋅ γd +2 ⋅ γm ⋅ (1−v) (13) and it is independent on the particle diameter and 
depends on the specific debonding energy. If, however, debonding takes place in a certain 
dissipation zone with radius ρd then Eq. (4) is the relevant one. To evaluate this equation 
the critical  
composite strains ε
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or stresses σ
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 must be inserted, and with Eq. (3) this provides:  
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For the determination of the process zone energy in this case it must be considered that 
debonding causes unloading of some regions around the particles that can not yield, that’s 
why the matrix volume fraction that yields is lower than the matrix volume fraction. From 
a simple consideration of the geometry, as shown in Fig. 3 it follows:  
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Now the debonding and plastic energies must be derived. The volume 
specific debonding energy, η

d 
, is given by dividing the debonding 

energy of one particle by the representative volume: 2πd
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γd =γd (16)2rdr d where it is considered that roughly only half 
the number of particles can debond, because, if one particle 
debonds the neighbouring one is unloaded and cannot debond. 
This equation means that, if all particles have the same (mean) 
diameter, d, the volume specific dissipation energy will 
increase with decreasing particle diameter.  The yielding 
energy of matrix regions, as shown in Fig. 3, are provided by 
some geometrical considerations of their volume relative to 
the volume of the representative element, shown on the right 
side:  1 

ηmy =ωm ⋅  vmy =ωm ⋅  (17) 

α(1−v) with ωm  as the volume specific plastic energy of the 
matrix. The determination of that energy is not trivial because it represents the local 
plastic behaviour of the  
matrix within a heterogeneous environment and might be quite different from the 
macroscopic values. However, herein as a first approximation the property of the bulk 
material is used.  Now it is possible to consider the problem of particle size dependence of 
crack resistance. On the one hand, using the critical stress or strain criterion (Eq. (6)) 
together with (15), (16) and (17) provides: 8  
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As can be seen, the crack resistance depends on the specific debonding  
energy, γd , and the mean particle diameter, d. The debonding strain or stress,  
 
respectively can be determined as well as γd experimentally. On the other hand, using the 
energy criterion of debonding, Eq. (9) with Eq. (8), together with Eqs. (15-17) provides:  
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Contrary to Eq. (18) the crack resistance now becomes independent of the particle mean 
diameter, d, and surprisingly also on the adhesion energy. This result is in contradiction to 
the experimental observations; see Fu et al [1].  Now the proposed model is applied for 
glass sphere filled (volume fraction of v=0.1) polyethylene with the following material 
properties of the spheres: elastic modulus Ep= 64 x10

3 

MPa and Poisson’s ratio νp= 0.2. 
The properties of the polyethylene matrix are: Em= 520 MPa, νm= 0.35 and 2γm = 2.8 
kJ/m

2 

,  
ωm =47MPa and εmy = 0.28 . The specific debonding energ at the particle/matrix  

interface is: γd ≈ 10
−4 

kJ / m
2 

and the debonding strain is: εd = 0.2 . And for the  

composite modulus the relation: Ec = Em 
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proposed by Hashin  

and Strikman [8] is used. Only the particle diameter dependence is considered in the 
following. The resultsare shown in Fig. 4.  

Particle diameter, d [mm]  



 

Fig. 4. Crack resistance as a function of particle diameter for the parameters as given 
within the text.  
It reveals that there is a decrease of crack resistance with increasing particle diameter for 
very small particles. For larger particles the crack resistance remains nearly unaffected by 
variation of particle diameter because the matrix yielding contribution prevails the energy 
dissipation. The consideration of debonding and matrix yielding in a dissipation zone 
provides much higher values than that obtained with the assumption that dissipation takes 
place only in the process zone (Eq. (13)), cf. Fig. 4.  

5. Discussion and conclusions  

The application of the critical stress criterion leads to a dissipation zone size,which is 
independent of the particle diameter, as provided by Eqs. (3) and (6). Thus, the increase 
of crack resistance with decreasing particle size is caused by the increase in the volume 
specific debonding energy with decreasing particle diameter as reflected by Eq. (16). 
However, if the energy debonding criterion (Eq. (9)) is applied and inserted into Eq. (3) 
the dissipation zone radius becomes a function of particle diameter: ρd ~ d , causing the 
fracture toughness to become independent of the particle  
diameter. To improve this simple modelling for a more realistic characterization of 
composites the following aspects must be taken into account. The volumespecific energy 
of debonding, ηd , should not be assumed as a constant but the  
 
integral should be carried out in Eq. (2).  In real composites the particles are distributed 
and they are not homogeneous distributed and no less than cubic arranged. Thus a 
realistic particle distribution function should be considered. And this takes into account 
that there are pairs of particles, which are very close to each other, causing debonding 
also for rather low applied stresses as existing away from the crack tip.Further 
improvement of the modelling can be achieved by consideration of aparticle diameter 
distribution and by using the elastic-plastic or elastic-viscoplasitc material law of 
polymers.  
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