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Abstract. The methods to assess structural strength and fracture theories have 

been developed for several decades, and have been successful for many specific 

engineering applications. Here we report the recent progresses from 

two-dimensional (2D) to three-dimensional (3D) fracture theories based on two- 

and three-parameter descriptions, such as K-Tz, J-Tz and K-T-Tz, J-QT-Tz, and 

their applications in bridging the gap from academic researches and material tests 

in laboratories to practical engineering structures. Here, T and Q are parameters 

for in-plane constraints, while Tz is the out-of-plane constraint factor as a ratio of 

the out-of-plane stress to the sum of in-plane stresses. The following critical 

issues will be addressed: 1) From 2D fracture mechanics to 3D fracture mechanics; 

2) From tensile to mixed mode loadings; 3) From static/toughness to 

fatigue/durability; 4) From ambient to complex environments; 5) From empirical 

design to predictive design; 6) From design to fatigue life assessment. 

1. Introduction 

The current damage tolerance design of structures is based on the fracture 

mechanics theory. The linear elastic fracture mechanics was founded based on the 

theory of the stress intensity factor (SIF, K) introduced by Irwin [1] in 1948. 

Subsequently, Williams proposed a two-parameter K-T approach for the isotropic 

linear elastic materials in 1957 [2]. 
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In 1968，Rice proposed the conception of J-integral [3]; Hutchinson, Rice and 

Rosengren obtained the asymptotic crack-tip solution (HRR solution) for power 

hardening materials [4,5]. The HRR solution and Rice’s J-integral were obtained 

under the frame of deformation theory of plasticity, it was shown by large amount 

of numerical and experimental researches that the HRR solutions coincide very 

well with the finite element results based on flow theory and J dominates the 

crack tip field effectively in plane stress state, but in the plane strain state the J 
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dominated region is much smaller and dependent on loading type and geometrical 

configurations. In 1989, a two term higher order J-A2 solution for power 

hardening materials was developed by Li and Wang [6]. In the early of 1990s, 

Al-Ani AM and Hancock proposed a similar J-T theory [7]; Shih et al. found by 

systematic numerical analyses that the second term in the higher order solution 

can be approximated with a constant, thus proposed the widely used J-Q 

description [8,9] 
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Subsequently, higher order solutions up to four or five terms based on 

two-dimensional (2D) analyses were obtained by Xia, Wang and Shih [10] and 

Chao, Yang and Sutton [11], and it was shown that three or four terms expansion 

can match the finite element results of the in-plane stresses very well. In many 

situations, the simple two term K-T description of (1.1) or the J-Q description of 

(1.4) can provide basic predication of the influence of in-plane geometry and 

loading constraints on the crack-tip fields. So they are widely applied in fracture 

analysis to consider in-plane constraints. The J-T theory can be considered as a 

simplification of the J-Q description in the existence of a K dominated region. 

However, a planar stress state in finite thickness plates can only be obtained 

when the plates transmit in-plane uniform stresses as show by Fig. 1(a). Even in a 

plate subjected to in-plane loading, out-of-plane stress constraints will raise in the 

interior of the plate where the stress gradient exists at locations of stress 

concentration or near crack-tips, Fig. 1 (b) and (c). Generally, significant 

out-of-plane stress constraints can be found in regions with large in-plane stress 

gradient.  
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Fig. 1. Finite thickness plates under in-plane loading.  
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To evaluate the influence of the out-of-plane stress constraint on the crack-tip 

fields, the first author has introduced a so called out-of-plane stress constraint 

factor Tz 
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where the subscripts 1, 2 and 3 stand for x, y and z or r, θ and z, respectively, with 

z axis along the crack front line. In the plane stress state, Tz=0. In the plane strain 

state, Tz equals to Poisson’s ratio v in elasticity and 0.5 in incompressible pure 

plastic media, and may change from v to 0.5 in elastic-plastic materials. In the 

vicinity of a crack in finite bodies, Tz generally ranges from 0 to 0.5. The HRR 

solution has been extended by Guo from a two-dimensional solution with Tz=0 for 

plane stress or Tz=0.5 for plane strain to a J-Tz solution covering the whole range 

of Tz from 0 to 0.5[13-15]. 
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Where, the singularity exponent λ, the angular distribution and the amplitude are 

function of Tz.[12,13,14]  

2. Three-parameter decription of the crack-tip field 

Considering out-of-plane constraint, the 3D elastic and elastic-plastic stress 

field can be described completly by three-parameter model K-T-Tz and J-Q-Tz, 

which were firstly proposed by Guo[15,16,17,18]. 

The elastic stress field expression is 
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The stress field in elastic-plastic condition can be expressed as follows  
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Subsequently, the K-T-Tz and J-Q-Tz description of elastic and ealstic-plastic 

stress field at the border of various typical cracks have been obtained by 3D finite 

element calculations[19,20,21,22]. Parts of the stress components of K-T-Tz and 

J-Q-Tz description are shown in Fig. 2.[18,23] Obviously the formulae are well 

coincident with the numerial solution. 
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Fig. 2. (a) The elastic stress components of semi-elliptical surface crack front line 

at =45.14°; (b) The description of elastic-plastic stress parameters σθθ/σ0 of 

semi-elliptical surface crack front line. 

A set of empirical formulae of Tz for different types of cracks are obtained by 

fitting the detailed numerical results. [18,19,20,21,22,24,25] 

3. 3D Fracture criterions 

The traditional fracture toughness parameters (KC, JC) are strongly dependent on 

the thicknesses. So a series of tests on different element thickness specimens must 

be carried out to obtain the whole range of fracture toughness parameters. Many 

scholars[26,27,28,29,30] have paid much efforts on researching the variations on 

fracture toughness with thicknesses on specimens. 

For elastic fracture problems, Guo[31,32] proposed a 3D fracture toughness 

parameter Kzc, which was independent on specimens’ thicknesses and founded a 

3D fracture criterion. The 3D elastic fracture criterion can be expressed as follows 
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where KC is the plane strain fracture toughness. 

The two- and three- dimensional fracture toughness parameters KC and KZC are 

shown in Fig. 3 a, which reveal that the 3D fracture toughness is independent on 

thicknesses. 

For elastic-plastic fracture problems, the J-integral criterion was applied as 

follows[33] 
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where JC is the planar fracture toughness. 

The two- and three- dimensional fracture toughness parameters JC and JZC are 

shown in Fig. 3 (b). It can be found that the 3D fracture toughness is independent 

on thicknesses. 
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Fig. 3. Variation of two- and three- dimensional fracture toughness parameters 

KC-KZC (a) and JC-JZC (b) with thicknesses of test specimens. 

4. 3D constraint effects on fatigue crack propagation 

The famous Paris formula da/dN=c(ΔK)
m

 has been widely used in predicting 

the fatigue life of structures. Since plastic deformation near the crack tip is often 

unavoidable, it will cause a crack closure and reduce the effective range of SIF 

during a crack growth. In such a case the plasticity induced crack closure theory is 

used to describe the fatigue crack growth rate. Under small scale yielding, the 

da/dN~ΔKeff curve can be expressed in the form of 
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4.1 Crack closure model for through-thickness cracked bodies 

For through-thickness cracked bodies, Chang and Guo [34] developed the range 

of ΔKeff in Eq. (10) by combining the three-dimensional constraint theory [35] 

with the Budiansky–Hutchinson [36] model for crack closure, and gave an 

explicit expression of the ΔKeff 
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where, R is the stress ratio, αg is a combined constraint factor considering 3D 

stress status of the crack, and 
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where v is Poisson’s ratio, rp0=(π/8)(Kmax/σflow)
2
 is the Dugdale plastic zone radius, 

σflow=(σ0.2+σb)/2 is the flow stress of the material, B is the specimen thickness.  

Eqs. (11) and (12) were used to evaluate ΔKeff for through-thickness cracked 

bodies and the obtained da/dN~ΔKeff curves are independent of stress ratio as well 

as the specimen thickness which was shown in Fig.4.[37] 

 

Fig. 4. Fatigue crack growth data in 7475-T7351 aluminum alloy: CCT specimens 

with different thicknesses. 
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4.2 Crack closure model for 3D cracked base on the concept of equivalent 

thickness Beq 

For through-thickness crack bodies, 3D plasticity induced crack closure effect 

for fatigue crack propagation can be evaluated by use of Eqs. (11) and (12). For 

3D cracks bodies, however, the above Eqs. can not directly provide the local 

constraint factors α3D along the crack tip line because of the difficulty in defining 

the thickness. So, a new concept of equivalent thickness Beq was proposed [38] to 

replace the through-thickness B to calculate α3D 
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The Beq is defined as Beq=2min{ B1, B2}. As shown in Fig.5, B1 and B2 are the 

distances from the analyzed point P at the crack front to the boundary of the 

cracked bodies along the tangential line of the crack front line at P. For elliptical 

surface crack in a round bar, the equivalent thickness Beq at the deepest point P of 

crack is shown in Fig. 5 (a). Apparently the constraint factor α3D on the 3D crack 

border is a function of the positions. 

 

Fig.5. Definition of equivalent thickness Beq for 3D cracked bodies. 

  A set of experimental da/dN~ΔK data[39, 40] for elliptical surface cracks 

round bars and standard through-thickness cracked specimens (with thickness of 

15 mm and width of 30 mm) under constant amplitude loading (R=0.1 and 0.33) 

are presented in Fig.6 (a). But considering the crack closure effect the 

experimental points follow one curve as shown in Fig.6(b), obviously the three 

da/dN~ΔK curves are deviate from each other for different loading and geometry 

parameters. But on the condition that considering the crack closure effects, the 

da/dN~ΔK data in Fig. 6 (a) were analyzed using Eqs. (11)~(13) and the derived 

da/dN~ΔKeff data appear in a unique curve which were shown in Fig.6 (b) [41]. 

Consequently, the 3D constraint effects on surface crack propagation were 

successfuly evaluated.  
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Fig.6 da/dN~ΔK (a) and da/dN~ΔKeff (b) curves of 20CrMo steel. 

By use of the latest achievements of constraint theory and the concept of 

equivalent thickness Beq, 3D fatigue cracks propagation in complicated 

engineering structures can be analyzed effectively based on da/dN~ΔK curves of 

laboratory standard specimens. 

5. Conclusion 

The out-of-plane stress constraint factor Tz is a critical key parameter in the 3D 

fracture mechanics. The fracture and fatigue tests data from laboratory can be 

applied to the complex practical engineering structures in high rationality and 

efficiency. 
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