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Introduction 

 

In 1968 J.W. Hutchinson [1] published the fundamental work, which 

characterized the stress fields in front of a crack for the non-linear Ramberg-

Osgood (R-O) material: 
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where r and θ are polar coordinates of the coordinate system located at the crack 

tip, σij are the components of the stress tensor, J is the J-integral, n is R-O 

exponent, α  is R-O constant, σo is a yield stress, ε0 is a strain related to σo 

through the relation εo=σo/E. Functions ( )θσ ,~ nij
, ( )nI n  must be found by solving 

the fourth order non-linear homogenous differential equation, independently for 

plane stress and plane strain [1,2]. Equation (1) is often called the “HRR 

solution”. 

 

In 1993 O’Dowd and Shih [3,4], proposed simplified solution for the stress field 

which provided more exact results for plane strain and low constraint elements 

than the HRR formula 
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To avoid the ambiguity during the calculation of the Q-stress, O’Dowd and Shih 

suggested, that the Q-stress may be evaluated at the distance r=2J/σ0 from the 

crack tip at θ=0. The Q-stress is computed from the following relationship: 
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where (σθθ)FEM is the stress value calculated using finite element method (FEM) 

and (σθθ)HRR is a stress value evaluated form the HRR solution. The Q- parameter 

is a measure of the in-plane-constraint. 

 

Guo extended the HRR analysis in a series of papers [5-7] to the three-

dimensional (3D) case. In fact, he showed that the HRR singularity can be 

obtained for plane strain and plane stress only and in the 3D case the simplified, 

approximate formula in the form of Eq. (4) was proposed: 
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where J
far

 is so called far–field J-integral, computed along the contour drawn at 

the distance far from the crack tip, where the plan stress dominates. In Guo’s 

solution the thickness effect entered the final result through the functions 

Tz(n,r,x3), In(n,Tz) and ( )zij Tn ,,~ θσ  where x3 is the coordinate along the crack front. 

The computer program and results of computations of In(n,Tz) and ( )zij Tn ,,~ θσ  

functions were given by Galkiewicz and Graba [2]. The Tz parameter is defined 

as: 
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The Tz parameter changes from 0 for plane stress to 0.5 for plane strain. It can be 

considered as an out-of-plane constraint [8]. The example results of numerical 

computations of Tz in front of the crack are presented in Figs 1 and 2. 
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Fig. 1 Radial variation of Tz parameter for different load ratios and two work 

hardening exponent n. a) n = 3,  b)  n = 10 
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In- and out-of-plane constraint parameters in one formula for the stress field 

 

We postulate that the stress fields near the crack tip can be described using two 

terms. Both should take into account the three-dimensional nature of the 

mechanical fields. The first term is the Guo term and the second one is a 

generalization of the Q-parameter. Thus, we propose the following formula: 
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where Q
*
(n,Tz) can be computed from the Eq. 8.  
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Fig. 2. Variation of Tz parameter through the specimen thickness for different load 

ratios and R-O exponent n. a) n = 3,  b)  n = 10 

 

Equation 6 allows for computing σij values at an arbitrary point in front of the 3D 

crack. An alternative formula, less exact but more convenient to use in practical 

applications is proposed in the form 
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where Tm function is an average through the thickness value of Tz 
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Both the Tz and Q
*
 depend on a distance from the crack tip (Figs 1 and 2). Thus 

we compute the Q
*
 parameter at the distance 2J/σ0 by analogy to the O’Dowd and 

Shih approach as well as at the distance J/σ0, since in the domain around this 

point in front of the crack, the most important failure phenomena usually take 

place and the maximum value of the opening stress component (the large strain 

option) at the large external loading ( 10 ≅PP ) is located. 

 

Details of the numerical model  

 

The numerical analysis was performed for the single edge notched specimens in 

bending (SEN(B)) and for the 3D model, using a small strain option. The relative 

crack length was assumed a/W= 0.20 and 0.50 where a is a crack length and the 

width of specimens W was equal to 40mm. Computations were made using 

ADINA SYSTEM 8.4 [9]. Due to the symmetry, only a quarter of the specimen 

was modeled. The finite element mesh was filled with the 20-node 3D brick 

elements. The size of the finite elements in the radial direction was decreasing 

towards the crack tip, while in the angular direction the size of each element was 

kept constant. The crack tip region was modeled using 36 semicircles. The first of 

them was 20 times smaller then the last one. It also means, that the first finite 

element in front of the crack tip is 2000 times smaller then the width of the 

specimen. The crack tip was modeled as a half of the circle which radius was 

equal to rw=5⋅10
-6

m (0.000125×W). The mesh consists of eight layers of elements 

(through half of the thickness of the SEN(B) specimen). The layer interfaces are 

located at x3/B={0 ; 0.119 ; 0.222 ; 0.309 ; 0.379 ; 0.434 ; 0.472 ; 0.494 ; 0.5}. It 

should be noted that the layers become thinner as the free surface is approached. 

The one in the middle of the specimen is twenty times thicker then the layer near 

the free surface. In the numerical analysis five specimen thicknesses were used: 

B={4, 10, 20, 25, 40}. The SEN(B) specimen was modeled using 2488 finite 

elements and 12142 nodes.  

In the FEM simulation, the deformation theory of plasticity and the von Misses 

yield criterion were adopted. In the model the stress–strain curve was 

approximated by the relation:  
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where α=1. 

 

The tensile properties of the materials which were used in the numerical analysis 

are presented in Table 1. In the FEM analysis, calculations were made for twelve 

combinations of the yield stress and the work hardening exponent n. The J–

integral was calculated using the “virtual shift method” concept. In the numerical 

analysis 120 SEN(B) specimens were tested. 

 

Table 1. The mechanical properties of the materials used in numerical analysis. 

 

σ0 [MPa] E [MPa] ν ε0=σ0/E 

315 0.00153 

500 0.00243 

1000 

206000 0.3 

0.00485 

 

 

 

 
( )0~ =θσθθ

 In α n 
for plane strain 

3 1.94 5.51 

5 2.22 5.02 

10 2.50 4.54 
1 

20 2.68 4.21 

Numerical results and discussion 

 

In Fig. 3 the results obtained for several models are compared. Since we assume 

that the FEM results for 3D model of a specimen are the most accurate, all results 

are presented as a relative differences with respect to this model. 
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Fig.3. Comparison of results for various models of the stress field representation 

near the crack tip for SEN(B) specimen: a/W=0.20, B=10mm, W=40mm, 

σ0=500MPa, n=10, E=206000MPa, ν=0.30, ε0=σ0/E=0.00243 (σFEM for 

x3/B=0.000 (a) and x3/B=0.379 (b)). 

 

Figures 3 and 4 are representative for other results received in this research 

project. More results will be published soon. Notice, that the Guo’s results are 

more exact than those received using the HRR field. Guo included into analysis 
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the out-of-plane constraint effect only. O’Dowd and Shih approximation as well 

as Yang, Chao and Sutton [11] results are also more exact than received using the 

HRR formula. They take into account the in-plane constraint influence only.  

Eqs 6 and 7 contain both constraint measures. Results obtained with these 

formulas are the closest to the 3D numerical results. 

 

Computation of the Q* function requires numerical efforts. It depends on several 

variables: Tz, n, σ0/E, distance from the crack tip, r, x3 coordinate, the element 

thickness and the external loading. Also Tz function depends on many variables. 

However, it is possible and the research is on the way, to receive a simplified 

semi-analytical formulas both for the Tz (it was done for small scale yielding by 

Guo) and for  the Q* functions with the coefficients computed numerically. 

Authors of this papers are working on such a catalogue. In this paper some of the 

many results are presented.  
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Fig.4. Comparison of results for Guo and present models with respect to the 3D 

FEM results a) Guo description (Eq. 4); b) proposed model by Eq. (6,8) for 

SEN(B) specimen: a/W=0.50, B=25mm, W=40mm, σ0=315MPa, n=5, 

E=206000MPa, ν=0.30, ε0=σ0/E=0.00153 (P/P0=1.21). 

 

Aproximation of the numerical results 

 

All the approximations were made for the two distances from the crack tip: 

r=1J/σ0 and r=2J/σ0. In the first stage the Tz function was   approximated by the 

relation: 
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where the coefficients A,B,C,D were computed for each layer through the 

thickness and they depend on a work-hardening exponent n, a yield stress σ0, a 

specimen thickness B/W and a crack length a/W. All results of the approximation 
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in the form of simple formulas and the look-up tables  concerning the A,B,C,D 

coefficients will be published soon.  

In this paper the example results are shown for Tm, through–the–thickness average 

value of Tz function. In this case the situation is simpler since the Tm=f(J/(a⋅σ0)) 

function does not depend much on the R-O power exponent n as it is shown in 

Fig. 5. For the all of the 120 analyzed cases, the differences between the average 

curves and exact ones are not greater than 5 per cent.  
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Fig.5. The Tm=f(J/(a⋅σ0)) trajectories for two thicknesses of the SEN(B) 

specimens. 

 

The Tm=f(J/(a⋅σ0)) curves were aproximated using the following equations: 
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where A1 and B1 coefficients depend on a yield stress (σ0/E), a crack length (a/W) 

and a specimen thickness (B/W).  

In the next step, the cofficients A1 and B1 were expressed as the functions of B/W  
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where, in turn,  C1, D1, E1, F1 and C2, D2, E2, F2 are functions of a yield stress and 

a relative crack length.  Values of this cofficients are presented in the Table 2 

 

Table 2. The values of the C1, C2, E1, F1, D1, D2, E2, F2 coefficients. 
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m1=0.50316 

n1=-24392.8896 
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o3=-0.00286 

R2=0.9999 

( ) ( )[ ] 1

04

5.0

0441

−

+⋅+= EoEnmF σσ  
m4=1.57482 

n4=-27.72854 

o4=-0.00153 

R2=0.9999 

( )( ) ( ) ( )[ ]ErEEqpC 0100112 ln σσσ +⋅+=  
p1=3.53949 

q1=0.02240 

r1=0.16095 

R2=0.9999    

( )( ) ( ) ( )[ ]ErEEqpD 0300332 ln σσσ +⋅+=  
p2=2.93491 

q2=-0.16092 

r2=-1.1566 

R2=0.9999 

( ) ( )[ ]5.1

03

5.0

0332 ErEqpE σσ ++=  
p3=-36.5277 

q3=7.978378 

r3=-0.0054 

R2=0.9999 

( ) ( )[ ]2

040442 ln EoEnmF σσ +⋅+=  p4=38.40688 

q4=9.86205 
r4=1.90215⋅10-5 

R2=0.9999 

 

Accuracy of the approximation is high, as one can notice (R2=0.999), Authors 

prepare the computer program to compute the Tm, Tz and Q* values for arbitrary 

specimen sizes and material properties. The program will be available free of 

charge in the Internet and  it will be presented during the conference. At the same 

time simpler, but slightly less exact formulas are beeing prepared. 
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The last step in the analysis is to establish the relation between Q* (definition 

according to Eq.8) and Tm or Tz. We present below the selected numerical results. 

The numerical computations are completed but process of the approximation of 

these results by analytical formulas is in progress. The results of the 

approximations will be presented during the conference. An interesting result, 

which will be reflected by analytical formulas, is a relative *
mQ  independence of 

the external loading. 
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⋅J
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0
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SEN(B)   B = 4mm   a/W = 0.50   W = 40mm

σ0 = 500MPa   ν = 0.3

E = 206000MPa   (ε0 = σ0/E = 0.00243)

n = 3

n = 5

n = 10

n = 20

 

b) 

0.05 0.1 0.15 0.2 0.25 0.3

J/(a⋅σ0)
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-1.6

-1.2

-0.8

-0.4

0

Q
* m

  
(r

 =
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.0
⋅J

/σ
0
) 

 

SEN(B)   B = 40mm   a/W = 0.20   W = 40mm

σ0 = 1000MPa   ν = 0.3

E = 206000MPa   (ε0 = σ0/E = 0.00485)

n = 3

n = 5

n = 10

n = 20

 

Fig.6. *
mQ =f(J/(a⋅σ0)) trajectories for SEN(B) specimens with thickness: a) B=4mm, 

b) B=40mm both measured at the distance 2J/σ0. 

 

The strong influence of the specimen thickness on *
mQ  is observed (Fig. 7a) and 

moderate influence of  σ0/E (Fig. 7b) 
 

 
a) 

0.04 0.08 0.12 0.16

J/(a⋅σ0)

-1.2

-0.8

-0.4

0

Q
* m
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 2

.0
⋅J

/σ
0
)  

SEN(B)   a/W = 0.20   W = 40mm

σ0 = 500MPa   ν = 0.3   n = 3

E = 206000MPa   (ε0 = σ0/E = 0.00243)

B = 4mm   (B/W = 0.100)

B = 10mm   (B/W = 0.250)

B = 20mm   (B/W = 0.500)

B = 25mm   (B/W = 0.625)

B = 40mm   (B/W = 1.000)

 

b) 

0.04 0.08 0.12

J/(a⋅σ0)

-1.2

-0.8

-0.4

0

Q
* m

  
(r

 =
 2

.0
⋅J

/σ
0
)  

SEN(B)   B = 25mm   a/W = 0.20   W = 40mm

E = 206000MPa   n = 3   ν = 0.3   

σ0 = 315MPa   (ε0 = σ0/E = 0.00153)

σ0 = 500MPa   (ε0 = σ0/E = 0.00243)

σ0 = 1000MPa   (ε0 = σ0/E = 0.00485)

 

Fig.7. The *
mQ =f(J/(a⋅σ0)) curves for SEN(B) for various thicknesses and yield 

stresses. 
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In our research we concentrated on a relatively high external loading, which are 

greater than 50 per cent of the limit load. It is due to the fact that the research 

concerns the ferritic steels mostly. 
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