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1 BACKGROUND

The Weibull stress model and variations thereof have been used extensively to 
predict the probability of cleavage fracture in steels in the ductile-brittle transition 
region [1-7].  The standard Weibull stress model is based on a weakest-link 
assumption.  While the weakest-link model characterizes cleavage fracture 
initiation, it does not account for the possibility of crack arrest in the presence of a 
steep stress gradient, such as occurs in front of a crack.  Cleavage may initiate at a 
trigger near the crack tip and subsequently arrest because the crack driving force 
is insufficient for propagation.  This results in a minimum toughness, Kmin, below 
which cleavage propagation is not possible.

Previous researchers [1-4] have attempted to incorporate minimum toughness into 
the Weibull stress model, but their approach is inconsistent with the true physical 
meaning of Kmin. The present authors have developed a more rigorous formulation 
that introduces Kmin into the Weibull stress model through a hazard function.

2 WEAKEST-LINK CLEAVAGE

The initiation of cleavage fracture in carbon and low-alloy steels occurs by a 
weakest-link mechanism when the material is in the ductile-brittle transition 
region.  Cleavage initiates in a single fracture-triggering particle or other 
microstructural feature.  The probability of cleavage fracture in a given material is 
a function of applied stress and sample volume. The mathematical underpinnings 
of weakest link fracture are outlined below, along with the definition of Weibull 
stress.

Consider a solid with volume V under a uniform applied stress.  The probability 
that this volume has at least one critical cleavage trigger is given by the Poisson 
distribution:

 1 expF V   (1)

Where  is the density (number per unit volume) of critical cleavage triggers.  
Assuming  is governed by normal stress, then  is a function of the maximum 
principal stress, 1, in the case of a 3D stress field.  If the stress field is non-
uniform over volume V, Eq. (1) can be generalized as follows: 
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2.1 Weibull Stress Model

Let us assume that  1  follows a power law in stress:
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where m and u are material constants that characterize the density of cleavage 
triggers, and Vo is a reference volume.  For a uniformly stressed volume, 
substituting Eq. (3) into Eq. (1) gives:

  1
1 1 exp

m

u o

V
F

V




  
    
   

(4)

which is a two-parameter Weibull distribution.  For a non-uniform stress 
distribution, Eq. (4) becomes:
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Let us now define the Weibull stress as an equivalent uniform stress acting over 
volume V such that the cleavage probability is given by
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Equating the probabilities in Eqs. (5) and (6) leads to
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The Weibull stress can be viewed as a weighted average stress that depends on the 
1 distribution and the size of volume V.

We can introduce a threshold fracture stress, min, into the assumed functional 
relationship for :
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The threshold stress represents the minimum stress at which cleavage is possible, 
irrespective of the sample volume. Substituting the above definition into Eq. (1) 
results in a three-parameter Weibull distribution for a uniformly stressed volume:
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For a non-uniform stress field, Eq. (9) is generalized to a volume integral:
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where V* includes only the volume over which 1 min  .  The three-parameter 

version of Eq. (6) can be defined as follows:
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where

minˆw w    (12a)

minˆu u    (12b)

Solving for Weibull stress gives
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Thus the quantity  1 min

m  is integrated over V*.  Equations (7) and (13) 

coincide only if min = 0 or m = 1.
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2.2 Weakest Link Model for Toughness

In the absence of constraint loss, the crack tip stress field in front of a crack is 
uniquely related to the applied J-integral.  Applying dimensional analysis to this 
situation results in a functional relationship of the following form:
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Where r the radial distance from the crack tip,  is the angle from the crack plane, 
and o is the yield stress.  By substituting this function into Eq. (2), it can be 
shown that the cleavage probability and the crack driving force are related 
through a two-parameter Weibull distribution with a known exponent:
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Note that there is only one fitting parameter, ˆ
oJ . Invoking the relationship 

between K and J for small-scale yielding gives
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These relationships hold irrespective of the functional form of (1). A
comparison of Eqs. (11) and (16) implies the following relationship between 
Weibull stress and stress intensity factor:
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Equation (17) can be expressed in the following form:

4ˆ m
w JK   (18)

where  is a constant that incorporates the parameters in Eq. (17).  Under large-
scale yielding conditions, where constraint loss is possible, the relationship 
between Weibull stress and crack driving force can be expressed as follows:

 4ˆ m
w JK g J   (19)
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Where  g J is a dimensionless constraint parameter that varies with 

deformation. Under small-scale yielding conditions,   1,g J  but this factor falls 

below unity when constraint loss occurs.

3 INCORPORATING THRESHOLD TOUGHNESS

Cleavage initiation is a necessary but not sufficient condition for fracture.  
Macroscopic crack propagation requires that the crack driving force exceed the 
arrest toughness.  Therefore, fracture toughness cannot fall below a threshold 
value, Kmin.

Previous researchers have attempted to introduce Kmin to the Weibull stress model 
by linking it to min [1-4].  However, these two threshold quantities are unrelated, 
so a direct link is not justified.  The threshold stress corresponds to the normal 
stress value below which cleavage initiation is impossible, irrespective of sample 
volume.  The threshold toughness represents the minimum crack driving force for 
propagation of cleavage fracture.  Even if cleavage initiation occurs at the 
microscopic level due to stresses in excess of min at the crack tip, the crack will 
not propagate macroscopically unless the crack driving force exceeds Kmin.

The derivation outlined below modifies the Weibull stress model by introducing a 
conditional probability of propagation through a hazard function.  Given a 
random variable x, the probability that oX x X  is given by
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where H(x) is the hazard function.  By comparing Eqs. (16) and (20), we see that 
the hazard function for weakest-link cleavage under small-scale yielding 
conditions is given by
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Let us now introduce a conditional probability of cleavage propagation, given 
initiation (Ppr).  The hazard function is modified as follows:
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Wallin [8] has suggested the following functional form for the conditional 
probability of propagation:
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Note that Ppr approaches unity when KJ >> Kmin.

Solving for cumulative probability gives,
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which is a three-parameter Weibull distribution.  This is consistent with the 
toughness distribution given by the Master Curve method [9]:
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Where B is the crack front length and Bo is a reference length dimension (usually 
25 mm). Equations (24) and (25) coincide if
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Under small-scale yielding conditions, the crack driving force is related to 
Weibull stress through Eq. (17).  Thus the hazard function can be written as
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Although Eq. (17) applies only in the case of small-scale yielding, the above 
expression is generally applicable because the Weibull stress is assumed to 
represent the true driving force for cleavage irrespective of whether or not KJ

similitude applies.
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Substituting Eqs. (23) and (27) into Eq. (20) results in the following expression 
for cumulative cleavage probability:
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The above expression assumes that the conditional probability of propagation is 
not influenced by constraint loss.  This is a reasonable assumption, since the 
propagation term is most important as KJ  Kmin, where KJ similitude will 
normally apply.

4 APPLICATION TO EXPERIMENTAL DATA

If the Weibull constants u, min, and m are known for a given material, along 
with Kmin, Eq. (28) can be evaluated to compute cleavage probability for a given 
cracked body and applied load.  Normally, an elastic-plastic finite element
analysis of the configuration of interest is performed to compute stresses near the 
crack tip and the J-integral.  The mesh near the crack tip must be sufficiently 
refined to capture the local stress field.

In order to apply this model to structural components, however, the material 
constants must first be calibrated with experimental data.  This can be done by 
evaluating Eq. (28) iteratively to select the material constants that provide the best 
fit to experimental data.  For a given material and temperature, two specimen 
configurations are normally used to calibrate the Weibull constants [1-4].  Once 
the model has been calibrated to two geometries, it can be used to predict the 
fracture behavior of other configurations.

Note that Eq. (28) contains a total of four material parameters: u, min, m, and 
Kmin.  Generally, it is neither practical nor appropriate to attempt to fit for all four 
constants to a given dataset.  Instead, it is better to assign physically reasonable 
values to min & Kmin, and then optimize u and m to provide the best fit to the 
data.  A suitable value for min is typically in the range of 2 to 2.5 times the yield 
stress.  The Master Curve method, as described in ASTM E 1921 [9], assumes a 

Kmin value of 20 MPa m , but higher values may be suitable, especially in the 
upper transition range.

Figure 1 shows experimental KJc data for SE(B) specimens with crack 
depth/width (a/W) ratios of 0.5 and 0.1 [5].  The curves represent fits of Eq. (28) 
for the two specimen configurations.  Elastic-plastic finite element analyses were 
performed to provide the KJ and principal stress input into Eq. (28). In this case, a 

Kmin value of 50 MPa m was assumed.  As of this writing, further work is in 
progress to apply Eq. (28) to other materials and configurations.
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FIGURE 1.  Experimental toughness data from Faleskog et al [5], which has been fit 
to Eq. (28) in the present study.

5 SUMMARY

In the present work, the Weibull stress model for cleavage was modified to 
incorporate a threshold toughness.  A conditional probability of propagation, 
given cleavage initiation, was introduced into the hazard function.  An extensive 
study is underway to apply this model to a variety of materials and configurations.
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