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ABSTRACT: A cohesive zone, finite element fracture analysis is based upon a traction-
separation relation. Our recent work has used molecular dynamics simulations to derive 
general traction-separation relationships for interfacial fracture between two brittle 
materials under mix-mode loading conditions. Here we apply our method to explore the 
effects of elastic constants of the two materials on the traction-separation relationship. A 
comparison and discussion of our results will be provided. 
 
1. INTRODUCTION 
 
Modern approaches to the modeling and simulation of interfacial fracture use a cohesive 
zone model that defines the relation between traction and crack opening displacement [1]. 
Because experimental measurement of traction and crack opening at the crack tip is 
difficult, specific cohesive zone laws are often assumed rather than predicted. Recent 
advances in atomistic simulation methods have enabled attempts to derive the cohesive 
zone law from physics-based models [2,3]. We recently developed a molecular dynamics 
(MD) based approach to model fracture between two brittle materials under any 
combination of far field tensile (mode I) and shear (mode II) strains, and derived directly 
analytical functions relating local traction, local displacement, and local loading mode 
mixity [4]. Previous results from this analysis suggest that the work of separation depends 
on the elastic constant mismatch between the two materials, especially at the near-shear 
loading condition [5]. However, it is not clear if this dependence was caused by elastic 
constant mismatch alone or combination of elastic constant mismatch and the magnitude 
of the elastic constants. Here we perform additional simulations to address this issue. 
 
2. METHODS 
 
Our MD model is based on pairwise interatomic potentials for body-centered-cubic (bcc) 
materials. For an A-B binary system containing an A/B interface, three pair potential 
functions are needed respectively for A-A, B-B, and A-B interactions. Previous work [5] 
has developed five pair potential functions φa(r), φb(r), …, φe(r) that have the same lattice 
constant and cohesive energy but different elastic constants. Here we assemble from 
these five pair functions four sets of potentials P1, P2, P3, and P4 for the binary A-B 
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system. The correspondence of the A-A, B-B, and A-B interactions to the φa - φe 
functions are shown in Table 1 for potentials P1 – P4. The corresponding lattice 
constants, cohesive energies, elastic properties, and work of adhesion [5] are also shown. 
Note that potentials P1 and P2 have been used in the previous work [5] whereas 
potentials P3 and P4 are new additions. 
 
Table 1:  Lattice constant a (Å ), cohesive energy Ec (eV/atom), elastic constants 
C11, C12, and C44 (eV/Å3), Young’s and shear moduli E and G (GPa), Poisson’s ratio 
ν, and work of adhesion woa (J/m2), predicted by potentials P1 – P4 

  function a Ec C11 C12 C44 E G ν woa 
A-A φa 3.162 -4.45 3.25 1.15 1.15 444 177 0.25 5.968
B-B φa 3.162 -4.45 3.25 1.15 1.15 444 177 0.25 5.968

 
P1 

A-B φd 3.162 -1.78 1.26 0.48 0.48 177 71 0.25 2.336
A-A φb 3.162 -4.45 3.41 1.21 1.21 466 186 0.25 5.968
B-B φc 3.162 -4.45 1.64 0.57 0.57 222 89 0.25 6.032

 
P2 

A-B φe 3.162 -1.78 0.46 0.33 0.33 72 28 0.30 2.400
A-A φa 3.162 -4.45 3.25 1.15 1.15 444 177 0.25 5.968
B-B φa 3.162 -4.45 3.25 1.15 1.15 444 177 0.25 5.968

 
P3 

A-B φe 3.162 -1.78 0.46 0.33 0.33 72 28 0.30 2.400
A-A φc 3.162 -4.45 1.64 0.57 0.57 222 89 0.25 6.032
B-B φc 3.162 -4.45 1.64 0.57 0.57 222 89 0.25 6.032

 
P4 

A-B φe 3.162 -1.78 0.46 0.33 0.33 72 28 0.30 2.400
 
The geometry of the system used in our MD simulations of crack propagation is shown in 
Fig. 1. The crystal contains 253 unit cells in the x- [100] direction, 206 unit cells in the y- 
[010] direction, and 10 unit cells in z- [001] direction, for a total of 1,042,360 atoms. 
Periodic boundary conditions were used in both x- and z- directions, and non-periodic 
boundary conditions were applied in the y- direction. As shown in Fig. 1, the top half of 
the crystal is composed of atoms A that fall into regions marked as 1 and 3, and the 
bottom half of the crystal is composed of atoms B that fall into regions marked as 2 and 
4. Atoms that are marked black are boundary atoms through which tensile and shear 
loads were applied.  
 
A crack in the middle of the A/B interface with an initial length around 28 nm was 
created by turning off the interactions between regions 1 and 2. To prevent the crack from 
being healed during shear deformation, we initiate atom neighbors at the start of the 
simulations and do not redetermine neighbors. During simulations of mode I crack 
propagation, the system is uniformly stretched (by moving each atom a distance 
corresponding to a uniform normal strain increment) in the y- direction each time step. 
During simulations of mode II crack propagation, the upper and lower halves of the 
vertical layer of black (boundary) atoms are displaced by a small distance in opposite 
directions along the x axis each time step. Numerical approaches are then used to update 
the atom positions based upon interatomic potential and Newton’s equations of motion 
under the condition that the y coordinates of the top and bottom horizontal layers of black 
atoms and the x coordinates of the vertical layer of black atoms remain fixed. All 
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simulations were carried out at a constant temperature of 300 K, fixed system dimensions 
in the x- and z- directions, and constant strain rate. 

3. RESULTS 
 
3.1. Stress – strain curves and crack propagation dynamics 
 
MD simulations of mode I (tensile) and mode II (shear) crack propagation were carried 
out for all four sets of potentials at constant boundary displacement rates X&Δ  and Y&Δ  in 
the x- and y- direction (see Fig. 1). The tensile and shear strain rates were defined by 

yyy LY&& Δ= 2ε  and yxy LX&& Δ= 2ε  respectively, where Ly is the sample dimension in the 
y- direction. The strain rates were chosen for each case so that the crack started to 
propagate at the late stage of the simulations. The strain rates used for different runs are 
shown in Table 2. 
 

TABLE 2: Shear 
xyγ&  and normal 

yyε&  strain rates (unit 108/s) for different runs. 

xyγ& /
yyε&  

Loading 
Potential P1 Potential P2 Potential P3 Potential P4 

Mode I 0.0/1.1 0.0/1.3 0.0/1.1 0.0/1.6 
Mode II 2.0/0.0 1.9/0.0 1. 8/0.0 2.1/0.0 

 

 
Fig. 1. Geometry of molecular dynamics simulation. 



 

 4

The Virial theorem [6] was used to estimate global normal (σyy) and shear (σxy) stresses 
applied to the system. To reduce thermal oscillation, values of stress and strain were 
averaged over 10 time steps (each time step is 0.001 ps). Results of normal stress vs. 
normal strain curves obtained from the mode I simulations are shown in Fig. 2(a), and 
results of shear stress vs. shear strain curves obtained from the mode II simulations are 
shown in Fig. 2(b). 

Fig. 2(a) indicates that during the tensile test, the normal stress initially increases linearly, 
corresponding to an elastic deformation of the system. The overall tensile elastic modulus 
seen from Fig. 2(a) is about 390 GPa for potentials P1 and P3,  270 GPa for potential P2, 
and 200 GPa for potential P4. For two materials A and B with the same height, the 
overall elastic modulus can be calculated as M = 2MAMB / (MA + MB), where M can be 
the tensile (e.g., C11, E etc.) or shear (e.g., C44, G) modulus and the subscripts A and B 
refer to material. The overall elastic modulus estimated from C11 in Table 1 is about 520 
GPa for potentials P1 and P3, 354 GPa for potential P2, and 262 GPa for potential P4. 
Note that the data listed in Table I were obtained at a temperature of 0 K whereas the 
values estimated from Fig. 2(a) are at 300 K at the presence of a crack. Nonetheless, the 
values estimated from Fig. 2(a) have the same trend as those in Table 1. In particular, the 
values estimated from Fig. 2(a) are seen to be about 75% of the values derived from 
Table 1 for all the potentials. 
 
After the normal stress reaches the maximum, it starts to decrease towards zero as the 
strain further increases, signifying a possible fracture. It can be seen that the maximum 
stress is approximately σmax ≈ 4.7 GPa for potentials P1 and P3, 4.0 GPa for potential P2, 
and 3.4 GPa for potential P4. The critical strain at which the maximum stress occurs is 
approximately εc ≈ 0.0124 for potentials P1 and P3, 0.0157 for potential P2, and 0.0180 
for potential P4. The average, nominal strain energy density prior to the apparent fracture, 
defined as Ef = σmax·εc/2, was calculated to be 0.030 GJ/m3 for potentials P1 and P3, 
0.033 GJ/m3 for potential P2, and 0.031 GJ/m3 for potential P4. This probably reflects, at 
least in part, that all systems have the same interfacial work of adhesion as shown in 
Table 1. 
 
A similar trend can be found in Fig. 2(b) for the shear test. The overall shear modulus 
estimated from the initial elastic deformation is estimated to be approximately 123 GPa 

 
Fig. 2. Stress and crack length as a function of strain. 
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for potentials P1 and P3, 86 GPa for P2, and 76 GPa for potential P4. It should be noted 
that our shear loading is applied through the displacement of the vertical layer of 
boundary atoms as shown in Fig. 1. Such an approach is necessary to isolate out the crack 
phenomenon from the slip phenomenon [4]. While the way in which the stress is 
introduced should not affect the local traction vs. crack opening displacement relation, 
this loading would not generate a uniform shear stress if the interface was uncracked. 
Consequently, the estimated shear modulus cannot be directly compared with the C44 
values listed in Table 1. However, the results are consistent as both Fig. 2(b) and Table 1 
show a decreasing order for the shear modulus from potentials P1/P3, P2 to P4. The 
maximum fracture shear stress is seen to be approximately τmax ≈ 2.1 GPa for potentials 
P1 and P3, 1.5 GPa for potential P2, and 1.2 GPa for potential P4, again showing a 
reduction of fracture stress due to a reduction of elastic modulus. We did not compare the 
critical strain and stored energy due to our special definition of the strain. 
 
To examine the correlation between the observed stress vs. strain curves and fracture, 
crack length as a function of strain were calculated using the previous approach [5] and 
the results are included in Fig. 2 for both tensile and shear tests. It can be seen that crack 
did not propagate during the linear elastic deformation stage. When the stress reached the 
maximum value, the crack began to propagate. The crack then grew monotonically with 
increasing nominal applied strain. 
 
3.2. Local traction and crack opening displacement 
 
Following the approach used previously [5], a large number of local traction vs. crack 
opening data points (measured at different locations and times) were obtained during 
crack propagation of each MD run. These data points were averaged using an opening 
displacement bin size of 0.2 Å. The average tensile traction vs. crack normal opening 
displacement data obtained from the tensile tests, and the average shear traction vs. crack 
shear opening displacement data obtained from the shear tests, are shown respectively in 
Figs. 3(a) and 3(b) for all potentials. Fig. 3 generally agrees well with the previous results 
[4,5], especially as it also shows the double peak for the shear case. Unlike the previous 
work [5], Fig. 3 allows us to examine the effects of both elastic constant (but MA = MB) 
and elastic constant mismatch (MA ≠ MB).  Here we focus on the shear case where the 
elastic constants are seen to have a more significant effect. Comparison between the 
results from potentials P1 and P3 indicates that for systems where the elastic constants of 
A and B remain unchanged, a reduction of the interfacial stiffness between A and B 
causes a slight reduction of the local traction vs. local opening curves, although this 
causes a negligible effect on the global elastic behavior due to the minor interfacial 
volume fraction (see Fig. 2). Comparison between results from potentials P3 and P4 
indicates that even when there is no elastic constant mismatch, a reduction in elastic 
modulus reduces the magnitude of the local traction generated by the local opening. 
Likewise, comparison between results from potentials P1 and P2 does show that elastic 
constant mismatch also reduces the magnitude of the local tractions. 
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Fracture toughness can be defined by the work of separation as follows: 
 

( ) ( ) ( )xdydww xyyy Δ⋅+Δ⋅== ∫∫
∞∞

00

σσψ  (1) 

 
By integrating Eq. (1), the work of separation was calculated with the results shown in 
Table 3. It can be seen that for the systems simulated, the mode II fracture generally has a 
higher toughness than mode I fracture. Consistent with the elastic constant effects 
observed in Fig. 3(b), the work of separation decreases from potential P1, P3, P2, to P4. 
The same trend can now be numerically seen for the tensile case, albeit less significantly.  
 

TABLE 3: Work of separation (J/m2) for different runs. 
Loading Potential P1 Potential P2 Potential P3 Potential P4 
Mode I 3.02 2.87 2.92 2.86 
Mode II 4.81 3.86 4.13 3.31 

 
4. CONCLUSIONS 
 
Systematic molecular dynamics simulations have been carried out to study the effects of 
elastic constants on the traction-separation relationship defining crack propagation 
between two brittle materials A and B. The simulations show that elastic constants have a 
noticeable effect on the local traction vs. crack opening relationship especially for the 
shear case where the local traction vs. crack opening curves may be reduced by either a 
reduction of the cross elastic constant between A and B (which has a minor effect on the 
global elastic properties), a reduction of the elastic constants of A and B, and an increase 
in the interfacial elastic mismatch. For the systems simulated, the mode II fracture has a 
higher work of separation than the mode I fracture. 
 
5. ACKNOWLEDGEMENTS 
 
Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin 
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