
 1

 

Constraining Dislocation Movement in Molecular Dynamics: 
Application to Crack-dislocation Interactions. 

 
D. Tanguy1 

 

CNRS, UMR 5146, Ecole des Mines de Saint-Etienne, centre SMS, 
158 cours Fauriel, F-42023 Saint-Etienne, France. 

 
 
Abstract: 
Modeling semi-brittle fracture is a multiscale task. A first approach could be 
made in two dimensions by coupling discrete dislocation dynamics (DD) and 
molecular dynamics (MD). The problem is that dislocations are not static in MD 
whereas, in DD, equilibrium elastic solutions and superposition are usually used. 
We have recently proposed new equations of motion for MD which give full 
control on dislocation mobility. An order parameter is used to measure the local 
shear and use it as a holonomic constraint, in the same spirit as the constraints 
used in the dynamics of molecules with rigid bonds. In this paper, we show two 
applications : constraining dislocation emission from a crack tip (intrinsic 
ductility) and the calculation of crack tip shielding from a pinned dislocation. We 
show that DD and MD are in excellent agreement, which opens the possibility of 
studying complex dislocation – crack tip arrangements, multiscale. 
 
 
1. Introduction 
 
Crack propagation does not occur in ductile crystals (austenitic stainless steels, 
aluminum and nickel based alloys) under tensile load. They fail, after a large, 
irreversible, deformation by coalescence of voids and intense, localized, plastic 
shear. On the contrary, when degradation from the environment occurs 
(irradiation, H embrittlement, liquid metal embrittlement), a crack might nucleate 
at the surface and propagate through the crystal, either because of embrittlement 
by adsorption at the tip or by solute segregation at defects ahead of the tip, like 
interfaces . Another important class of solids is those which exhibit a brittle to 
ductile transition (BDT), like body centered cubic crystals (ferritic steels, β 
titanium) or silicon. In this case, the response of the material to an external load is 
largely dominated either by dislocation mobility or multiplication. At low 
temperature, thermal activation is not efficient enough to enable dislocation 
movement and the system relaxes its elastic energy by propagating a crack. At 
high temperature, dislocations are emitted and arrange in such a way as to release 
the elastic energy. The transition between these two behaviors is usually not sharp 
[1], at a definite temperature (Tc), when the system contains enough built in 
dislocations that can act as sources. It means that within a temperature window 
around Tc, these materials could also develop brittle cracks in a noticeably ductile 
matrix. Therefore, both problems (environment degradation and BDT) rely on the 
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same basic situation: a loaded crack tip in interaction with a collection of 
dislocations. 
Our approach of the simulation of this situation is somewhat ``radical'' in the 
sense that we believe that crack-dislocation interactions should be modeled at a 
mesoscale, using elasticity theory (and, if possible, discrete dislocations), whereas 
crack tip phenomena should be treated at the atomic scale by MD. It means that 
dislocation nucleation during crack propagation should be forbidden in MD 
simulations (blunting can be taken into account), except when dealing the specific 
problem of emission from the tip. This because MD box are not large enough and 
the time scales are too short to handle the formation of a dislocation 
microstructure. To achieve this decoupling, we derive equations of motion which 
incorporate a constraint in order to control dislocation activity (nucleation and 
mobility) in MD simulations. These are used only to measure some quantities 
characteristic of the fracture process at the tip that can be transferred to higher 
scales, as shown below. 
The connection between atomistics and the mesoscale (from the nm to 10µm, in 
2D) relies on the powerful results of the continuum theory of cracks. Linear 
elasticity and complex analysis provide analytical solutions for the stress fields 
valid in all space, in the presence of dislocations [2] (in 2D). The first major result 
is the universal shape of the asymptotic fields close to the tip: 
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where the dependence on the remote load, boundary shapes, crack length are all 
included in the single scalar k called the stress intensity factor. For example, for a 
flaw of length 2a, in an infinite medium, loaded by a stress σ: ak πσ= . 
When dislocations are present, k depends on the configuration i.e. on the set of 
dislocation positions, but Eq.1 is still valid. In this case, k is referred to as the 
``local k'' and the applied load as Kapplied [2]. Kapplied is the stress intensity factor 
that the crack would undergo from the remote load if there were no dislocations. 
The crack is said to ``shielded'' if k< Kapplied. The second important result is the 
connection with the elastic energy release rate G (the variation of the stored 
elastic energy with the crack length): '2 EG k= , where E' is an elastic constant. 

For a perfect brittle crack propagation, where the shape of the crack remains self-
similar, the Griffith energy balance provides a fracture criterion: '2 2 EG k IGS

==γ , 

where 2γs is the excess energy of the newly created surfaces. In the same spirit, 
we perform intensive quenched molecular dynamics simulations at increasing 
levels of load, measure k and detect the critical k values for the elementary 
processes at the tip: kIc for cleavage, kIe for dislocation emission, kIv for 
nucleation of vacancies... If the ``local k'' concept holds, these values could be 
incorporated in mesoscale simulations. 
In this paper, we recall the derivation of the equations for constrained molecular 
dynamics (CMD) and apply them: first in a system containing a crack alone, 
getting access to numerical values for kIc, kIe and kIv; second, in the case where a 
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single dislocation interacts with a crack. The constrains are applied at increasing 
distances from the crack tip where the dislocation is pinned. The stress calculation 
at the atomic scale shows how much shielding is provided by the dislocation as a 
function of its distance to the tip, which, compared to the elastic solution, 
provides a test of the local k concept. Finally, we briefly expose the principle of a 
discrete dislocation dynamics (DDD) simulation, just to give a first example of 
how the critical k can be used at the mesoscale. All the details concerning the 
different methods can be found in references [3-5]. Here, the emphasis is on 
making the link between them. 
 
 
2. Constrained molecular dynamics 
 
In order to control the dislocation activity, the local shear (the non elastic 
perturbation of the environment left along the glide plane by the displacement of 
the defect) has to be measured by an order parameter. We use a centrosymetry 
parameter CSi, inspired by [6]: 
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where i is the label of the particle where the local shear is evaluated and j is the 
label of its first neighbors, in the undeformed structure. The vectors qr  are the 
positions of the particles. The labels j and j+6 refer to a pair of opposite first 
neighbors in the undeformed structure of a centrosymmetric crystal, like fcc. 
Finally, the vectorial sum over all the pairs is projected on the glide direction b

r
. 

b
r

 is known a priori, from crystallography (for example, the 12 Shockley partial 
orientations in fcc). This order parameter is very close to zero when the structure 
is only elastically deformed and takes a large value, close to mb² when a 
dislocation of Burgers vector b has sheared its local environment. m is the number 
of first neigbour pairs which are sheared by the dislocation. For example, m=3 for 
a glide along a {111} plane in fcc. 
 
Then, the constraint is: 
 
 CSCS i

<  (3) 

 
where CS is a constant threshold, higher that the variations of CSi due to the 
elastic deformations alone. If n particles are constrained, Eq.3 form a set of 
coupled equations which depend only on positions: holonomic constraints. 
Following [7, 8], equations of motions are derived [3] which incorporate these 
constraints by means of Lagrange multipliers. The additional term they contain is 
a configurational force aligned along the glide direction specified by b

r
 in Eq.2. 

We recall that holonomic constraints don't produce any work. This property is 
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interesting, as shown in the next paragraph, when the method is used to constrain 
crack tips in order to study purely brittle crack propagation. 
A first application is the quantification of the intrinsic ductility versus brittleness 
of a material. Consider a crack (Fig.1), in an fcc single crystal, lying along a 
{111} plane, with a crack front lying along <110>, loaded in traction (mode I). In 
this orientation, most fcc crystals are intrinsically ductile (except pathological 
cases like Iridium) which means that a dislocation is spontaneously emitted from 
the crack tip at a critical load. It is not possible to explore the brittle 
configurations in that case, which are clearly not physical, but nevertheless 
interesting if one wants to know how much the cohesion should be decreased (by 
impurity segregation for example) in order to get a transition from intrinsic 
ductility to brittleness [9]. By constraining the particles in the vicinity of the crack 
tip (light gray particles on Fig.1b), such brittle configurations can be explored. In 
the calculations of Fig.1, the traction is applied by a rigid displacement at the 
border of the box. This is not an efficient way to characterize the load at the crack 
tip. As explained in the introduction, it is more convenient to use the stress 
intensity factor. Following [10], we measure k at the tip by fitting the virial stress 
profile on the Inglis solution. With the interatomic potential given in [11], we 
observe dislocation emission at kIe≈0.64kIG, brittle crack propagation at kIc≈kIG 
and also an original mechanism, where vacancies form just ahead of the crack tip, 
at kIv≈kIG. This last result is obtained on a blunted crack tip constrained one plane 
further away than the crack presented on Fig.1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 : (a) An intrinsically ductile crack, loaded just above kIe, emits a 
Shockley partial dislocation. The crack lies along a {111} plane in fcc with a 
crack front along <110>. The interatomic potential is the phenomenological Al 
from [11]. (b) A brittle crack, loaded just above kIG, propagates. The light gray 
particles are constrained. The potential is the same as in (a). 
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3. Crack tip shielding 
 
We now turn to the basic concept underlying the multiscale simulation of semi-
brittle cracking: the local k felt by the crack tip in the presence of a dislocation. 
Two twin problems are treated in parallel. The first calculation, done by CMD, 
concerns a nanometer scale flaw, of length 2a=16a0. The second is a semi-infinite 
crack in an infinite isotropic medium treated by the elastic theory [2]. To 
introduce a dislocation in the atomistic box, the load is increased slightly above 
kIe and a small mode III is added to force the emission of the second partial, 
whose Burgers vector in not in the plane of the figure because of the 
crystallographic orientation. The crucial point is to obtain static stress fields 
which are the one that can be compared to elasticity. As the dislocation is perfect, 
it is not tied to the crack tip by the stacking fault ribbon. Therefore, it should cross 
the box and get stuck at the border. CMD can efficiently pin the dislocation: 
instead of constraining particles at the immediate vicinity of the crack tip, they 
can be constrained at some chosen positions, further away, along the glide plane 
[4]. A set of positions is shown in table 1. The stress profiles computed by both 
methods, for these configurations, are presented in Fig.2. 
 
Table 1 : Distances where the dislocations are pinned, along the slip plane 
inclined at θ=70° (zero is the tip). See figure1 for the orientation of the slip plane. 
The numbers given to the frames are consistent through all the figures and text. 
Frame number 0 1 2 3 4 6 10 
Distance (a0) 0 3.7 7.4 11 14.7 22.1 36.8 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 : Comparison of the stress profiles (multiplied by the atomic volume) 
(traction) obtained by CMD (symbols) and elastic calculations (lines). The 
positions of the dislocation are given in table 1. The frames are shifted 
downward by steps of 0.1eV for clarity. Multiply the stress values by 9.8 to have 
GPa ([σ]=1 eV/((4.04 Å)3/4)=9.8GPa). 
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On the curves (1) to (3), the agreement is bad between CMD and elasticity. The 
configurations correspond to the emission of the first Shockley partial with a 
stacking fault ribbon joining the tip. Curves (4) to (10), where the agreement is 
remarkable, correspond to a fully formed, perfect, dislocation. Curve (0), in Fig. 
2, represents the load in the absence of dislocation and the stress singularity is 
characterized by Kapplied. As the dislocation is emitted, the stress singularity is 
indeed decreased and the good agreement with elasticity allows the use of the 
analytical formulas for the computation of k. The concept of local k is therefore 
valid, provided the dislocation is perfect. Note that elasticity breaks down, not 
because of nonlinearity (the stress levels are still in the range where the potential 
is reasonably linear), but because of the presence of the stacking fault. The 
surprise is the quite large distance that must separate the crack from the 
dislocation in order for the analytical formulas to be valid: of the order of 10a0 
(Table 1), 4nm, with respect to the Burgers vector dimension. 
 
 
4. Discrete dislocation dynamics 
 
The basic ingredients of the simulation are recalled. A trace of the crystalline 
structure is included in this continuum elasticity based simulation by fixing the 
orientation of the glide planes. The entire space is covered by parallel slip planes, 
with a spacing of the order of 80b, where b is the Burgers vector of the 
dislocations considered. Dislocation sources are randomly distributed on these 
slip planes. Time t is discretized. From the value of Kapplied at time t, the stress 
field can be computed at any point in space using analytical stress formulas. 
When the stress on a source is higher than a critical value for nucleation τnuc, the 
source is activated and a dislocation dipole is emitted which, in this simple 2D 
model, represents the trace of a dislocation loop. Once a dislocation is emitted, it 
is displaced according to a velocity law: 
 
 fBv
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r
 is the Peach and Koelher force obtained from ξσ
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line vector. B is a constant (viscous drag). σ  is the stress tensor computed from 
the complex potentials in[2] which included the contribution of the crack and all 
the dislocations. It was used previously by Chateau [12] for treating the problem 
of H segregation at a pile up ahead of a crack. Phenomenological rules are also 
applied to describe the pinning at obstacles, the line tension effect, annihilation 
and junction formation [13]. A dislocation structure develops in front of the crack 
tip, with formation of intense slip bands due to crack tip emission and activation 
of sources in region of high resolved shear (primary and secondary slip) [5]. 
Figure 3 shows the time evolution of the local k which includes the contribution 
of the whole dislocation structure. At early times, the local k and the applied K 
are the same, until emission is activated (first from the tip and then from many 
other sources). Emission ``from the tip'' occurs at kIe≈0.25MPa m1/2. The criterion 
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is such that a new dislocation can not be emitted until the preceding has moved 
away, the speed of which depends on the density of obstacles and the dislocation 
configuration, in particular the formation of junctions. Therefore, in between two 
dislocation emissions, K and k increase and k becomes higher than kIe. The 
critical load for brittle propagation is kIc≈0.9MPa m1/2, which should be reached, 
by extrapolation, for K≈3MPa m1/2. Then, in principle, the crack should be 
advanced by an infinitesimal amount and the local k recomputed. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The validity of this fracture criterion, when the dislocation free zone is very small, 
is not clear and needs to be tested, in particular when the crack approaches a 
dislocation stored on the interface. Another limitation which should be lifted with 
more MD simulations is the crack velocity, in presence of dislocations close to the 
tip. 
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