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The common approach to fracture dynamics, linear elastic facture mechanics
(LEFM), assumes infinitesimal deformation gradients, but,in the vicinity of
a crack’s tip predicts diverging /2 crack tip strains, a result that appears
self-contradictory. We derive the leading nonlinear elast corrections to these
asymptotic fields and show that the resulting theory quantiatively resolves a
number of discrepancies raised by recent near-tip measureents of the strain
field surrounding a dynamic crack, which are presented in an acompanying
paper. We show that no region ofr—'/2 dominance exists and "more-divergent”
strain terms occur at a finite distance from the tip. In addition, a dynamical
length-scale, associated with a nonlinear elastic zone, pgars naturally. Where
LEFM falls short, the theory provides excellent quantitative agreement with
the measured, near-tip, displacement and strain fields. Theheory serves
as a springboard for the development of a comprehensive thep of fracture
dynamics.

1. Introduction

Understanding the dynamics of rapid cracks remains a mhgitenge in Engineer-
ing, Physics, Material Science and Geophysics. For exanhpgi@ velocity crack

tip instabilities [1, 2] remain poorly understood from a diamental point of view.

Much of our understanding of how materials fail stems fromdar Elastic Fracture
Mechanics (LEFM) [3], which assumes that materialslarearly elastic outside of

a small zone where all nonlinear and dissipative processas ¢“process zone”).

A central facet of LEFM is that strains divergesas/? at a crack’s tip and that this
singularity dominates all other strain contributions irstfegion. Linear elasticity
should be expected to break down before dissipative presesscur. The small
size and rapid propagation velocity of the near-tip regibrbmitle cracks have,

however, rendered quantitative measurements of the ipeéields elusive. As a

result, under dynamics conditions the fundamental progsedf the process zone,
where material separation is actually taking place, renaigely unknown. It is

thus of prime importance to understand the basic physicdetet extend LEFM

when the fracture process zone is approached.

In the accompanying paper [4] direct near-tip measuremeithe displacement
field u(r) were achieved for Mode | cracks propagating at rapid veks;it.
Defining (r, #) as coordinates moving with the crack tip, the propagatioaction,

x is defined by=0 and the loading directiony,, by = /2. As predicted by LEFM,
these experiments revealed that the crack tip opening @rofilr, £7), is parabolic
beyond a velocity-dependent length-scle). However, it was shown that although
uz(r,0 = 0) in this range also follows the functional form predicted bgRM, its



FIG. 1: The measured strain,,(r,0 = 0), (dots) is compared to the theoretical (LEFM)
prediction (solid curve), see [4] for details. The discrepabetween the two increases with
the crack velocity: (ap =0.20cs, (b) v=0.53c,, (€) v=0.78¢5. For the higher velocity (c),
LEFM predicts anegative strain (compression) ahead of the crack tip.

parameters argconsistent with those described by, (r, £7)! Moreover, the strain
component,,(r,0) = d,u,(r,0) waswholly incompatible with LEFM, indicating

a “more-divergent” behavior than~'/2. These puzzling discrepancies become
increasingly severe asincreases. A demonstration of these findings is shown in
Fig. 1.

In this paper, we show thall of these puzzles can be quantitatively resolved by
taking into account nonlinear corrections to linear etatsti which must be relevant
near the crack tip. This is achieved by perturbatively exiramnthe momentum
balance equation for an elastic medium up to second orddineanties in the
displacement gradients. The resulting theory provides elnpicture of the
structure of the fields surrounding a crack tip, and may hayaications for our
understanding of crack dynamics.

2. Weakly nonlinear theory of dynamic fracture

Nonlinear material response at the large strains near &'stgz motivates us to for-
mulate a nonlinear elastic dynamic fracture problem undmeostress conditions.
Consider the deformation fiel@, which is assumed to be a continuous, differen-
tiable and invertible mapping between a reference configura: and a deformed
configurationz’ such thate’ = ¢(x) = = + u(x). The deformation gradient tensor
F is defined asF’ = V¢ or explicitly F}; = d;; + 0;u,;. The first Piola-Kirchhoff
stress tensos, that is work-conjugate to the deformation gradiéntis given as
s=0rU(F'), whereU(F) is the strain energy in the deformed configuration per unit
volume in the reference configuration [5]. The momentumnadaequation is

V-s= p&tt(b y (1)

wherep is the mass density. Under steady-state propagation comsliive expect
all of the fields to depend om andt through the combinatiom — vt and therefore
0,=—wv0d,.. The polar coordinate system that moves with the crack tiglagged to the

rest frame by =/(z — vt)? + y? andd =tan"'[y/(z — vt)]. Thus, the traction-free



boundary conditions on the crack faces are

Suy(r,0==%m)=5,,(r,0==%71) =0 . (2)

To proceed, we note that in the measurement region of [4] #eamal strain levels
are0.2—0.35 (see below) as the velocity of propagation varied fi@gic, to 0.78¢,,

wherec, = m is the shear wave speed (s the shear modulus). These lev-
els of strain motivate a perturbative approach where qaiadekastic nonlinearities
must be taken into account. Higher order nonlinearitiesagdected below, though
they most probably become relevant as the crack velocityeases. We write the
displacement field as

u(r,0) ~ eu (r,0) + Eu®(r,0) + O(?) (3)

wheree quantifies the (dimensionless) magnitude of the strain aFRgeneral/ (F'),
s andg can be expressed in termswf Eq. (3). Substituting these in Egs. (1)-(2)
one can perform a controlled expansion in orders of

To make the derivation concrete, we need an expliif’) that corresponds to the
experiments of [4]. The polymer gel used in these experigiswell-described by a
plane stress incompressible Neo-Hookean constitutivgdhwlefined by the energy
functional [7]

U(F) = 5 [FyFy + det(F) > = 3] (4)
Using this explicitU (F'), we derive the first order problem in
pV2uV +3uV(V - u®) = pa (5)
with the boundary conditions &t=+r
r~topu) + 9,ul) =0, 4r'9pul) + 20,4l = 0. (6)

This is a standard LEFM problem [3]. The near crack-tip (gstotic) expansion of
the steady state solution for Mode | symmetry is [3]

Ki\/r Trcosf

W (r g:0) = IVE 0 (6 O(r3/2
Ki\r Trsin 6@
euél)(r,é;v) = 4ul\/\/2;ﬁ§2y(9;v)— o +O(7’3/2). (7)

Here K is the Mode | “stress intensity factor” afdis a constant known as the “T-
stress”. Note that these parameters cannot be determintbe lagymptotic analysis
as they depend on thgtobal crack problem.(6;v) is a known universal vector
function whose components are given as

u(0:0) = gy (1 dvaacos (%) = 2aseyireos ()]

80éd

Q,(0;v) = D) l(l + a?)y/7qsin (%) — 2,/7s sin <%>] . (8)




Here
25in% ¢ 2
Yod = |1 — Y s;n ., D(v) =4dagos — (1 +a§)
cs,d
tanfys = agstand, ais =1- vz/cfm ) (9)

e in Eq. (3) can be now defined explicitly as= K;/[4u+/27¢(v)], wherel(v) is a
velocity-dependent length-scaléy) defines the scale where only the ord@nde?
problems are relevant. It isdynamic length-scale that marks the onset of deviations
from a linear elastic constitutive behavior.

The solution of the orderequation, i.e. Egs. (8), can be now used to derive the sec-
ond order problem ia. The form of the second order problem for an incompressible
material is vl
12?4 3uV(V - u®) + W i@ | (10)
The boundary conditions @t= 4+ become
K(v)l

r_lagug) + &ué?) = 47“_189%2) + 20ru§:2) + ( =0, (11)
r

where contributions proportional fd were neglected. The functiotiv) is given by

_ A8vag (a2 — 1)

12
wherec,; = 2¢, for an incompressible material under plane stress comditsbould

be used. The functiog(d; v) will be discussed below.

The problem posed by Eqgs. (10)-(11) has the structure of tattee LEFM
problem with a body forcex »—2 and a crack face forcec r—!. Note that Egs.
(10)-(11) are valid in the range ¢(v), wheree? is non-negligible with respect to
¢, but higher order contributions are negligible. Since oaenot extrapolate the
equations to smaller length-scales, no real divergent\ieha the » — 0 limit

is implied. We stress that the structure of this problem isensal. Onlyg(6;v)
andx(v) depend on the second order elastic constants resultingdsgranding a
general U(F) to second order ia. For example, thec r—2 effective body-force in
Eq. (10) results from terms of the foré{0u" du), which are generic quadratic
nonlinearities.

We now focus on solving Eq. (10) with the boundary conditiohgqgs. (11) for the
explicitg(0; v) andx(v) derived from Eq. (4). Our strategy is to look for a particular
solution of the inhomogeneous Eq. (Mithout satisfying the boundary conditions
of Egs. (11) and then to add to it a solution of the correspagndiomogeneous
equation that makes the overall solution consistent wittbtbundary conditions. We
find that the inhomogeneous solutidfi(d; v), is r-independent. The homogeneous
solution is obtained using a standard approach [3] by ndkiagthe second boundary



condition of Egs. (11) requires that its first spatial defixascales ag~!. The
solution of the second order problem for Mode | symmetry is

A 2 qin?
Alogr + — log< Y 51;1 9)
€4

EuP(r,0;v) =

2

K; 2{
dp/2m
Bag, v?sin’ 0
+ Baglogr + Tlog 1-— > +Tx(9;v)},
c

S

K
dp/2m

where A = [2a,B — 49,1, (m;v) — k(v)]/(2 — 4a3) (cf. EqQ. (11)) and, is the
dilatational wave speed:; = 2¢, for an incompressible material under plane stress
conditions. A striking feature of Eqs. (13) is that they leadstrain contributions
that vary asr—!, which are “more-singular” than the '/ strains predicted by
LEFM.

2
ezuf) (r,6;v) = ( ) { — Aoy — BOs + Y, (6; U)}a (13)

The analytic form ofY (0; v) depends mainly o (¢;v). The latter can be repre-
sented as

N(v) N(v)
Z an(v) cos(nd), g,(0;v)= > by,(v)sin(nb). (14)
n=1

Forv=0we haveN (0) =3 and the representationdsact, while for higher velocities
it provides analytic approximations with whatever accyraeeded. Fop ~ 0.8¢,
only seven terms provide a representation that can be regiaschct for any practical
purpose, see belowW (0; v) is then obtained in the form

N(v) N(v)
ch cos(nf), Y, (0;v)=> d,(v)sin(nb), (15)
n=1

where the unknown coefficients are determined by solvingeali set of equations.
The coefficientsi, (v), b, (v), cn(v), d,(v), for the three velocities discussed in this
paper, are given in the following table:



coefficientv =0.20¢,|v =0.53¢,|v =0.78¢,|coefficientv = 0.20¢,|v =0.53¢c, |v =0.78¢,
aq -7.75 -14.56 | -56.72 c1 -2.34 -4.28 -16.14
s 18.43 29.47 97.27 Co 1.85 3.00 9.96
as -2.23 -1.39 13.92 3 -0.19 -0.15 0.62
ay -0.18 -2.40 -22.29 4 -0.008 | -0.10 -0.87
as - 0.22 -3.68 cs - 0.01 -0.05
ag - 0.20 5.19 Ce - 0.005 0.10
ay - - 0.96 cr - - 0.007
as - - -1.25 g - - -0.015
g - - -0.24 Co - - -0.001
aio - - 0.30 1o - - 0.0027
by -7.23 -13.49 | -48.38 dy -1.43 -2.99 -12.54
by 18.23 26.89 75.50 dy 1.85 2.97 9.91
b3 -2.20 -1.20 10.28 ds -0.19 -0.18 0.45
by -0.18 -2.14 -16.08 dy -0.008 | -0.10 -0.91
bs - 0.19 -2.55 ds - 0.01 -0.037
b - 0.17 3.57 dg - 0.004 0.111
by - - 0.65 dy - - 0.005
bs - - -0.84 dg - - -0.017
by - - -0.16 dy - - -0.0006
bio - - 0.20 dqo - - 0.0023

3. Comparison to experiments

We now show that the second order solution of Egs. (13) dytmesolves the
discrepancies raised by trying to interpret the experialedata of [4] in the
framework of LEFM. The complete second order asymptotiatsmh, Egs. (3), (8)
and (13), contains three parametek§ (7" and B) that cannot be determined from
the asymptotic solution and therefore must be extracted fhe experimental data.
These parameters were chosen such that Egs. (3), (8) angrd®)rly describe
the measured,(r,0). Examples forv/c, = 0.20, 0.53 and 0.78 are provided in
Fig. 2 (top). WithK;, T'and B at hand, we can now test the theory’s predictions
for ¢,,(r,0) with no adjustable free parameters. The corresponding results are
compared with both the measured data [4] and LEFM predistiofrig. 2 (bottom).
In general, the agreement with the experimental data isllente These results
demonstrate the importance of the predicted strain terms near the crack tip.
¢ is estimated as the scale where the largest strain compogeaciies values of
0.10—0.15. For the data presented in Fig. 2g, > ¢,,, wheres,, =0,u, is obtained
by differentiatingu,.. Thus,/ can be read off of the bottom panel tob®.5—1mm.
Similar estimates can be obtained for everyhough not always does, > ¢, €.9.
Fig. 2c.

Forv=0.53c, (Fig. 2b) the theory still agrees well with the measuremeaiteough
some deviations near the tip are observed. These deviatignal that higher
order corrections may be needed, though second order eanilies still seem to
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FIG. 2: Top: Measured.,(r,0) (circles) fitted to the x component of Eq. (3) (solid line)
for (&) v = 0.20cs with K; = 1070Pa/m, T' = —3150Pa andB = 18. (b) v = 0.53¢, with
K1 =1250Pa/m, T = —6200Pa andB = 7.3 and (c)v = 0.78¢s with K; = 980Pa,/m,

T =—6900Pa andB = 26. Bottom: corresponding measurements gf(r, 0) = 0yuy(r, 0)
(circles) compared to the theoretical nonlinear solutich Eq. (3))with no adjustable
parameters (solid lines); K7, T" and B are taken from the fit ofi,(r,0). (dashed lines)
LEFM predictions (analysis as in [4]) were added for conmgaarj cf. Fig. 1.

provide the dominant correction to LEFM. For higher vel®st it is not clear,
a-priori, that second order nonlinearities are sufficient to desdhle data. In fact,
the strain componert,,.(r,0) for v = 0.78¢, reaches a value of 0.35 in Fig.
2c, suggesting that higher order nonlinearities may be mapt Nevertheless,
the second order theory avoids a fundamental failure of LE&tVhigh velocities
(v>0.73c, for an incompressible material) LEFM predicts (dashed imEig. 2c)
that the contribution proportional t&; in ¢, (r, 0) (derived from Egs. (8)) becomes
negative. This implies that,,(r, 0) decreases as the crack tip is approached and
becomesompressive. This is surprising, as material points straddlifig 0 must be
separated from one another to precipitate fracture. Thessécond order nonlinear
solution (solid line), though applied beyond its range aidry, already induces
a qualitative change in the character of the strain. Thissiking manifestation
of the breakdown of LEFM, demonstrating that elastic nadnities are generally
unavoidable, especially as high crack velocities are reéchrhe results of Figs.
2a-c both provide compelling evidence in favor of the depetb theory and
highlight inherent limitations of LEFM. We note thétv) increases with increasing
v, reaching values in the mm-scale at very high

Our results indicate that the widely accepted assumptiofiKeflominance” of
LEFM, i.e. that there is always a region where the/? strain term dominates
all other contributions, is violated here. The results enésd in Fig. 2 explicitly
demonstrate that quadratic nonlinearities become impbita the same region
where a non-negligibl@&-stress exists. As elastic nonlinearities intervene lectioe
r~1/2 term dominates the strain fields, the contributionbath of these terms must



be taken into account as one approaches the crack tip. Saheoesvof thel'-stress
and of B are system specific, this observation is valid for the speeiperimental
system under study. They do indicate that the assumptioK-afdminance” is not
always valid.

An additional puzzle raised in [4] was that although the farhboth w,(r,0) and
the Crack Tip Opening Displacement (CTOD) agreed with LEFM, respective
derived values ofi(; differed by about 20%, cf. Fig. 3a in [4]. This puzzle is
resolved by the theory as follows. The form of the CTOD is gibg ¢, (r, £7) as

a function of the distancej,(r, 7), from the crack tip in the moving (laboratory)
frame. Substituting = 7 into Egs. (3), (8) and (13), the nonlinear theory predicts
that the CTOD remains parabolic, where the(r) term in ¢, (r, ) is negligible
compared to-. This occurs at theame scale/(v) at which nonlinear corrections
are essential to describe the straifat 0, cf. Fig. 1. Quantitatively, the parabolic
CTOD can be described with’; values that differ from those describing(r,0)

by only a few percent with theame values ofl” and B (cf. Fig. 2). This smallk;
variation is possibly related to sub-leading nonlinearecirons associated with the
T-stress and will be addressed elsewhere.

Let us now consider the CTOD in the near vicinity of the crapk te. whenr is
further reduced. Egs. (13) predict the existencéogfterms in¢,(r,60). These
terms, which are negligible & = 7 on a scale/(v), must become noticeable
at smaller scales. Although this region is formally beyohd tange of validity
of the expansion of Eq. (3), we would still expect the exiseemf a CTOD
contribution proportional tdog » to be observable. We test this prediction in Fig.
3 by comparing the measured small-scale CTOD to both thdopbcd EFM form
and the second order nonlinear solutieith no adjustable parameters. We find
that thesdog-terms, whose coefficients were determined at a séalg capture
the initial deviation from the parabolic CTOD ét= 4= to a surprising degree
of accuracy. This result lends further independent sugpainte validity of Egs. (13).

4. Concluding remarks

In this paper we have shown that the second order solutisepted in Eqgs. (13)
resolves in a self-consistent way all of the puzzles thateweghlighted in [4].
This solution is universal in the sense that its generic @riigs are independent of
geometry, loading conditions and material parameters. \&eldventirely expect
that any material subjected to the enormous deformations that sadohe tip of

a crack must experienc least quadratic elastic nonlinearities, prior to the onset
of the irreversible deformation that leads to failure. Oesults show that these
deformations, which are the vehicle for transmitting breglstresses to crack tips,
must be significantly different from the LEFM descriptiospecially at highv.

One may ask why we should not consider still higher ordertiela®nlinearities.
We surmise that quadratic elastic nonlinearities may beciapeas they mark
the emergence of a dynamic length-scéle) that characterizes a region where
material properties - like local wave speeds, local respdimees and anisotropy
- becomedeformation dependent. This line of thought seems consistent with the
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FIG. 3: Measured crack tip profileg{(r, +m) vs. ¢,(r, 7)) (circles). Shown are the
parabolic LEFM best fit (dashed line) and the profiles predidty the second order non-
linear corrections (solid line). (&) =0.2¢; and (b)v = 0.53¢;. T and B are as in Fig. 2.
In contrast to thev 20% discrepancy in values dk; obtained in [4], the respective values
K =1170Pa/m and K; = 1300Pa,/m correspond to withir®% and4%, respectively, of
K obtained fromu, (r, 0) using the nonlinear theory, cf. Fig. 2.

observations of Refs. [8]. As supporting evidence for thesw we note that the
geometry-independent wave-length of crack path osablatidiscussed in [2, 9]
seems to correlate with the mm-scéle) at highv. Therefore, our results may have
implications for understanding crack tip instabilities.
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