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The common approach to fracture dynamics, linear elastic fracture mechanics
(LEFM), assumes infinitesimal deformation gradients, but,in the vicinity of
a crack’s tip predicts diverging r−1/2 crack tip strains, a result that appears
self-contradictory. We derive the leading nonlinear elastic corrections to these
asymptotic fields and show that the resulting theory quantitatively resolves a
number of discrepancies raised by recent near-tip measurements of the strain
field surrounding a dynamic crack, which are presented in an accompanying
paper. We show that no region ofr−1/2 dominance exists and ”more-divergent”
strain terms occur at a finite distance from the tip. In addition, a dynamical
length-scale, associated with a nonlinear elastic zone, appears naturally. Where
LEFM falls short, the theory provides excellent quantitative agreement with
the measured, near-tip, displacement and strain fields. Thetheory serves
as a springboard for the development of a comprehensive theory of fracture
dynamics.

1. Introduction
Understanding the dynamics of rapid cracks remains a major challenge in Engineer-
ing, Physics, Material Science and Geophysics. For example, high velocity crack
tip instabilities [1, 2] remain poorly understood from a fundamental point of view.
Much of our understanding of how materials fail stems from Linear Elastic Fracture
Mechanics (LEFM) [3], which assumes that materials arelinearly elastic outside of
a small zone where all nonlinear and dissipative processes occur (“process zone”).
A central facet of LEFM is that strains diverge asr−1/2 at a crack’s tip and that this
singularity dominates all other strain contributions in this region. Linear elasticity
should be expected to break down before dissipative processes occur. The small
size and rapid propagation velocity of the near-tip region of brittle cracks have,
however, rendered quantitative measurements of the near-tip fields elusive. As a
result, under dynamics conditions the fundamental properties of the process zone,
where material separation is actually taking place, remainlargely unknown. It is
thus of prime importance to understand the basic physics needed to extend LEFM
when the fracture process zone is approached.

In the accompanying paper [4] direct near-tip measurementsof the displacement
field u(r) were achieved for Mode I cracks propagating at rapid velocities, v.
Defining (r, θ) as coordinates moving with the crack tip, the propagation direction,
x is defined byθ=0 and the loading direction,y, by θ=π/2. As predicted by LEFM,
these experiments revealed that the crack tip opening profile,uy(r,±π), is parabolic
beyond a velocity-dependent length-scaleδ(v). However, it was shown that although
ux(r, θ = 0) in this range also follows the functional form predicted by LEFM, its
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FIG. 1: The measured strain,εyy(r, θ = 0), (dots) is compared to the theoretical (LEFM)
prediction (solid curve), see [4] for details. The discrepancy between the two increases with
the crack velocity: (a)v=0.20cs, (b) v=0.53cs, (c) v=0.78cs. For the higher velocity (c),
LEFM predicts anegative strain (compression) ahead of the crack tip.

parameters areinconsistent with those described byuy(r,±π)! Moreover, the strain
componentεyy(r, 0) = ∂yuy(r, 0) waswholly incompatible with LEFM, indicating
a “more-divergent” behavior thanr−1/2. These puzzling discrepancies become
increasingly severe asv increases. A demonstration of these findings is shown in
Fig. 1.

In this paper, we show thatall of these puzzles can be quantitatively resolved by
taking into account nonlinear corrections to linear elasticity, whichmust be relevant
near the crack tip. This is achieved by perturbatively expanding the momentum
balance equation for an elastic medium up to second order nonlinearities in the
displacement gradients. The resulting theory provides a novel picture of the
structure of the fields surrounding a crack tip, and may have implications for our
understanding of crack dynamics.

2. Weakly nonlinear theory of dynamic fracture
Nonlinear material response at the large strains near a crack’s tip motivates us to for-
mulate a nonlinear elastic dynamic fracture problem under plane stress conditions.
Consider the deformation fieldφ, which is assumed to be a continuous, differen-
tiable and invertible mapping between a reference configuration x and a deformed
configurationx′ such thatx′ =φ(x) = x + u(x). The deformation gradient tensor
F is defined asF = ∇φ or explicitly Fij = δij + ∂jui. The first Piola-Kirchhoff
stress tensors, that is work-conjugate to the deformation gradientF , is given as
s=∂FU(F ), whereU(F ) is the strain energy in the deformed configuration per unit
volume in the reference configuration [5]. The momentum balance equation is

∇ · s = ρ∂ttφ , (1)

whereρ is the mass density. Under steady-state propagation conditions we expect
all of the fields to depend onx andt through the combinationx−vt and therefore
∂t =−v∂x. The polar coordinate system that moves with the crack tip isrelated to the
rest frame byr=

√

(x − vt)2 + y2 andθ=tan−1[y/(x−vt)]. Thus, the traction-free
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boundary conditions on the crack faces are

sxy(r, θ=±π)=syy(r, θ=±π) = 0 . (2)

To proceed, we note that in the measurement region of [4] the maximal strain levels
are0.2−0.35 (see below) as the velocity of propagation varied from0.20cs to 0.78cs,
wherecs =

√

µ/ρ is the shear wave speed (µ is the shear modulus). These lev-
els of strain motivate a perturbative approach where quadratic elastic nonlinearities
must be taken into account. Higher order nonlinearities areneglected below, though
they most probably become relevant as the crack velocity increases. We write the
displacement field as

u(r, θ) ≃ ǫu(1)(r, θ) + ǫ2u(2)(r, θ) + O(ǫ3) , (3)

whereǫ quantifies the (dimensionless) magnitude of the strain. Fora generalU(F ),
s andφ can be expressed in terms ofu of Eq. (3). Substituting these in Eqs. (1)-(2)
one can perform a controlled expansion in orders ofǫ.

To make the derivation concrete, we need an explicitU(F ) that corresponds to the
experiments of [4]. The polymer gel used in these experiments is well-described by a
plane stress incompressible Neo-Hookean constitutive law[6], defined by the energy
functional [7]

U(F ) =
µ

2

[

FijFij + det(F )−2 − 3
]

. (4)

Using this explicitU(F ), we derive the first order problem inǫ

µ∇2u(1) + 3µ∇(∇ · u(1)) = ρü(1) , (5)

with the boundary conditions atθ=±π

r−1∂θu
(1)
x + ∂ru

(1)
y = 0, 4r−1∂θu

(1)
y + 2∂ru

(1)
x = 0 . (6)

This is a standard LEFM problem [3]. The near crack-tip (asymptotic) expansion of
the steady state solution for Mode I symmetry is [3]

ǫu(1)
x (r, θ; v) =

KI

√
r

4µ
√

2π
Ωx(θ; v)+

Tr cos θ

3µ
+ O(r3/2),

ǫu(1)
y (r, θ; v) =

KI

√
r

4µ
√

2π
Ωy(θ; v)−Tr sin θ

6µ
+O(r3/2). (7)

HereKI is the Mode I “stress intensity factor” andT is a constant known as the “T-
stress”. Note that these parameters cannot be determined bythe asymptotic analysis
as they depend on theglobal crack problem.Ω(θ; v) is a known universal vector
function whose components are given as

Ωx(θ; v) =
8

D(v)

[

(1 + α2
s)
√

γd cos

(

θd

2

)

− 2αdαs
√

γs cos

(

θs

2

)]

,

Ωy(θ; v) = − 8αd

D(v)

[

(1 + α2
s)
√

γd sin

(

θd

2

)

− 2
√

γs sin

(

θs

2

)]

. (8)
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Here

γs,d =

√

√

√

√1 − v2 sin2 θ

c2
s,d

, D(v) = 4αdαs −
(

1 + α2
s

)2

tan θd,s = αd,s tan θ, α2
d,s ≡ 1 − v2/c2

d,s . (9)

ǫ in Eq. (3) can be now defined explicitly asǫ≡KI/[4µ
√

2πℓ(v)], whereℓ(v) is a
velocity-dependent length-scale.ℓ(v) defines the scale where only the orderǫ andǫ2

problems are relevant. It is adynamic length-scale that marks the onset of deviations
from a linear elastic constitutive behavior.

The solution of the orderǫ equation, i.e. Eqs. (8), can be now used to derive the sec-
ond order problem inǫ. The form of the second order problem for an incompressible
material is

µ∇2u(2) + 3µ∇(∇ · u(2)) +
µℓg(θ; v)

r2
= ρü(2) . (10)

The boundary conditions atθ=±π become

r−1∂θu
(2)
x + ∂ru

(2)
y = 4r−1∂θu

(2)
y + 2∂ru

(2)
x +

κ(v)ℓ

r
= 0, (11)

where contributions proportional toT were neglected. The functionκ(v) is given by

κ(v) =
48v2α2

d (α2
s − 1)

c2
sD

2(v)
, (12)

wherecd = 2cs for an incompressible material under plane stress conditions should
be used. The functiong(θ; v) will be discussed below.

The problem posed by Eqs. (10)-(11) has the structure of an effective LEFM
problem with a body force∝ r−2 and a crack face force∝ r−1. Note that Eqs.
(10)-(11) are valid in the range∼ ℓ(v), whereǫ2 is non-negligible with respect to
ǫ, but higher order contributions are negligible. Since one cannot extrapolate the
equations to smaller length-scales, no real divergent behavior in the r → 0 limit
is implied. We stress that the structure of this problem is universal. Onlyg(θ; v)
andκ(v) depend on the second order elastic constants resulting fromexpanding a
general U(F ) to second order inǫ. For example, the∝ r−2 effective body-force in
Eq. (10) results from terms of the form∂(∂u(1)∂u(1)), which are generic quadratic
nonlinearities.

We now focus on solving Eq. (10) with the boundary conditionsof Eqs. (11) for the
explicit g(θ; v) andκ(v) derived from Eq. (4). Our strategy is to look for a particular
solution of the inhomogeneous Eq. (10)without satisfying the boundary conditions
of Eqs. (11) and then to add to it a solution of the corresponding homogeneous
equation that makes the overall solution consistent with the boundary conditions. We
find that the inhomogeneous solution,Υ(θ; v), is r-independent. The homogeneous
solution is obtained using a standard approach [3] by notingthat the second boundary
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condition of Eqs. (11) requires that its first spatial derivative scales asr−1. The
solution of the second order problem for Mode I symmetry is

ǫ2u(2)
x (r, θ; v) =

(

KI

4µ
√

2π

)2
[

A log r +
A

2
log

(

1 − v2 sin2 θ

c2
d

)

+ Bαs log r +
Bαs

2
log

(

1 − v2 sin2 θ

c2
s

)

+ Υx(θ; v)
]

,

ǫ2u(2)
y (r, θ; v) =

(

KI

4µ
√

2π

)2
[

− Aαdθd − Bθs + Υy(θ; v)
]

, (13)

whereA = [2αsB − 4∂θΥy(π; v) − κ(v)]/(2 − 4α2
d) (cf. Eq. (11)) andcd is the

dilatational wave speed.cd = 2cs for an incompressible material under plane stress
conditions. A striking feature of Eqs. (13) is that they leadto strain contributions
that vary asr−1, which are “more-singular” than ther−1/2 strains predicted by
LEFM.

The analytic form ofΥ(θ; v) depends mainly ong(θ; v). The latter can be repre-
sented as

gx(θ; v)≃
N(v)
∑

n=1

an(v) cos(nθ), gy(θ; v)≃
N(v)
∑

n=1

bn(v) sin(nθ). (14)

Forv=0 we haveN(0)=3 and the representation isexact, while for higher velocities
it provides analytic approximations with whatever accuracy needed. Forv ≃ 0.8cs

only seven terms provide a representation that can be regarded exact for any practical
purpose, see below.Υ(θ; v) is then obtained in the form

Υx(θ; v)≃
N(v)
∑

n=1

cn(v) cos(nθ), Υy(θ; v)≃
N(v)
∑

n=1

dn(v) sin(nθ), (15)

where the unknown coefficients are determined by solving a linear set of equations.
The coefficientsan(v), bn(v), cn(v), dn(v), for the three velocities discussed in this
paper, are given in the following table:
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coefficientv=0.20cs v=0.53cs v=0.78cs coefficientv=0.20cs v=0.53cs v=0.78cs

a1 -7.75 -14.56 -56.72 c1 -2.34 -4.28 -16.14
a2 18.43 29.47 97.27 c2 1.85 3.00 9.96
a3 -2.23 -1.39 13.92 c3 -0.19 -0.15 0.62
a4 -0.18 -2.40 -22.29 c4 -0.008 -0.10 -0.87
a5 - 0.22 -3.68 c5 - 0.01 -0.05
a6 - 0.20 5.19 c6 - 0.005 0.10
a7 - - 0.96 c7 - - 0.007
a8 - - -1.25 c8 - - -0.015
a9 - - -0.24 c9 - - -0.001
a10 - - 0.30 c10 - - 0.0027
b1 -7.23 -13.49 -48.38 d1 -1.43 -2.99 -12.54
b2 18.23 26.89 75.50 d2 1.85 2.97 9.91
b3 -2.20 -1.20 10.28 d3 -0.19 -0.18 0.45
b4 -0.18 -2.14 -16.08 d4 -0.008 -0.10 -0.91
b5 - 0.19 -2.55 d5 - 0.01 -0.037
b6 - 0.17 3.57 d6 - 0.004 0.111
b7 - - 0.65 d7 - - 0.005
b8 - - -0.84 d8 - - -0.017
b9 - - -0.16 d9 - - -0.0006
b10 - - 0.20 d10 - - 0.0023

3. Comparison to experiments
We now show that the second order solution of Eqs. (13) entirely resolves the
discrepancies raised by trying to interpret the experimental data of [4] in the
framework of LEFM. The complete second order asymptotic solution, Eqs. (3), (8)
and (13), contains three parameters (KI , T andB) that cannot be determined from
the asymptotic solution and therefore must be extracted from the experimental data.
These parameters were chosen such that Eqs. (3), (8) and (13)properly describe
the measuredux(r, 0). Examples forv/cs = 0.20, 0.53 and 0.78 are provided in
Fig. 2 (top). WithKI , T andB at hand, we can now test the theory’s predictions
for εyy(r, 0) with no adjustable free parameters. The corresponding results are
compared with both the measured data [4] and LEFM predictions in Fig. 2 (bottom).
In general, the agreement with the experimental data is excellent. These results
demonstrate the importance of the predictedr−1 strain terms near the crack tip.
ℓ is estimated as the scale where the largest strain componentreaches values of
0.10−0.15. For the data presented in Fig. 2a,εyy >εxx, whereεxx =∂xux is obtained
by differentiatingux. Thus,ℓ can be read off of the bottom panel to be∼0.5−1mm.
Similar estimates can be obtained for everyv, though not always doesεyy >εxx, e.g.
Fig. 2c.

Forv=0.53cs (Fig. 2b) the theory still agrees well with the measurements, although
some deviations near the tip are observed. These deviationssignal that higher
order corrections may be needed, though second order nonlinearities still seem to
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FIG. 2: Top: Measuredux(r, 0) (circles) fitted to the x component of Eq. (3) (solid line)
for (a) v = 0.20cs with KI = 1070Pa

√
m, T = −3150Pa andB = 18. (b) v = 0.53cs with

KI = 1250Pa
√

m, T = −6200Pa andB = 7.3 and (c)v = 0.78cs with KI = 980Pa
√

m,
T =−6900Pa andB = 26. Bottom: corresponding measurements ofεyy(r, 0) = ∂yuy(r, 0)

(circles) compared to the theoretical nonlinear solution (cf. Eq. (3)) with no adjustable
parameters (solid lines); KI , T and B are taken from the fit ofux(r, 0). (dashed lines)
LEFM predictions (analysis as in [4]) were added for comparison, cf. Fig. 1.

provide the dominant correction to LEFM. For higher velocities, it is not clear,
a-priori, that second order nonlinearities are sufficient to describe the data. In fact,
the strain componentεxx(r, 0) for v = 0.78cs reaches a value of∼ 0.35 in Fig.
2c, suggesting that higher order nonlinearities may be important. Nevertheless,
the second order theory avoids a fundamental failure of LEFM; at high velocities
(v > 0.73cs for an incompressible material) LEFM predicts (dashed linein Fig. 2c)
that the contribution proportional toKI in εyy(r, 0) (derived from Eqs. (8)) becomes
negative. This implies thatεyy(r, 0) decreases as the crack tip is approached and
becomescompressive. This is surprising, as material points straddlingy=0 must be
separated from one another to precipitate fracture. Thus, the second order nonlinear
solution (solid line), though applied beyond its range of validity, already induces
a qualitative change in the character of the strain. This is astriking manifestation
of the breakdown of LEFM, demonstrating that elastic nonlinearities are generally
unavoidable, especially as high crack velocities are reached. The results of Figs.
2a-c both provide compelling evidence in favor of the developed theory and
highlight inherent limitations of LEFM. We note thatℓ(v) increases with increasing
v, reaching values in the mm-scale at very highv.

Our results indicate that the widely accepted assumption of“K-dominance” of
LEFM, i.e. that there is always a region where ther−1/2 strain term dominates
all other contributions, is violated here. The results presented in Fig. 2 explicitly
demonstrate that quadratic nonlinearities become important in the same region
where a non-negligibleT -stress exists. As elastic nonlinearities intervene before the
r−1/2 term dominates the strain fields, the contributions ofboth of these terms must



8

be taken into account as one approaches the crack tip. Since values of theT -stress
and ofB are system specific, this observation is valid for the specific experimental
system under study. They do indicate that the assumption of “K-dominance” is not
always valid.

An additional puzzle raised in [4] was that although the formof both ux(r, 0) and
the Crack Tip Opening Displacement (CTOD) agreed with LEFM,the respective
derived values ofKI differed by about 20%, cf. Fig. 3a in [4]. This puzzle is
resolved by the theory as follows. The form of the CTOD is given by φy(r,±π) as
a function of the distance,φx(r, π), from the crack tip in the moving (laboratory)
frame. Substitutingθ = π into Eqs. (3), (8) and (13), the nonlinear theory predicts
that the CTOD remains parabolic, where thelog(r) term in φx(r, π) is negligible
compared tor. This occurs at thesame scaleℓ(v) at which nonlinear corrections
are essential to describe the strain atθ = 0, cf. Fig. 1. Quantitatively, the parabolic
CTOD can be described withKI values that differ from those describingux(r, 0)
by only a few percent with thesame values ofT andB (cf. Fig. 2). This smallKI

variation is possibly related to sub-leading nonlinear corrections associated with the
T -stress and will be addressed elsewhere.

Let us now consider the CTOD in the near vicinity of the crack tip, i.e. whenr is
further reduced. Eqs. (13) predict the existence oflog-terms inφx(r, θ). These
terms, which are negligible atθ = π on a scaleℓ(v), must become noticeable
at smaller scales. Although this region is formally beyond the range of validity
of the expansion of Eq. (3), we would still expect the existence of a CTOD
contribution proportional tolog r to be observable. We test this prediction in Fig.
3 by comparing the measured small-scale CTOD to both the parabolic LEFM form
and the second order nonlinear solutionwith no adjustable parameters. We find
that theselog-terms, whose coefficients were determined at a scaleℓ(v), capture
the initial deviation from the parabolic CTOD atθ = ±π to a surprising degree
of accuracy. This result lends further independent supportto the validity of Eqs. (13).

4. Concluding remarks
In this paper we have shown that the second order solution presented in Eqs. (13)
resolves in a self-consistent way all of the puzzles that were highlighted in [4].
This solution is universal in the sense that its generic properties are independent of
geometry, loading conditions and material parameters. We would entirely expect
that any material subjected to the enormous deformations that surround the tip of
a crack must experienceat least quadratic elastic nonlinearities, prior to the onset
of the irreversible deformation that leads to failure. Our results show that these
deformations, which are the vehicle for transmitting breaking stresses to crack tips,
must be significantly different from the LEFM description, especially at highv.

One may ask why we should not consider still higher order elastic nonlinearities.
We surmise that quadratic elastic nonlinearities may be special, as they mark
the emergence of a dynamic length-scaleℓ(v) that characterizes a region where
material properties - like local wave speeds, local response times and anisotropy
- becomedeformation dependent. This line of thought seems consistent with the
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FIG. 3: Measured crack tip profiles (φy(r,±π) vs. φx(r, π)) (circles). Shown are the
parabolic LEFM best fit (dashed line) and the profiles predicted by the second order non-
linear corrections (solid line). (a)v = 0.2cs and (b)v = 0.53cs. T andB are as in Fig. 2.
In contrast to the∼ 20% discrepancy in values ofKI obtained in [4], the respective values
KI = 1170Pa

√
m andKI = 1300Pa

√
m correspond to within9% and4%, respectively, of

KI obtained fromux(r, 0) using the nonlinear theory, cf. Fig. 2.

observations of Refs. [8]. As supporting evidence for this view, we note that the
geometry-independent wave-length of crack path oscillations discussed in [2, 9]
seems to correlate with the mm-scaleℓ(v) at highv. Therefore, our results may have
implications for understanding crack tip instabilities.
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