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1 ABSTRACT 
 
 
Multiscale simulations of crack tip plasticity suffer from one significant limitation 
- as these simulations progress, large regions of the simulation domain are 
converted from continuum to atomistics to accommodate the evolution of 
dislocations.   We will describe a new continuum-atomistic framework for 
modeling dislocations which allows one to retain atomic resolution in the near 
core region, without significantly increasing the number of degrees of freedom in 
the system.  The framework combines the Bridging Domain Method (BDM) with 
the eXtended Finite Element Method (XFEM).  The XFEM-BDM framework 
allows the coarse-graining of both regions where the atomistic displacements are 
homogeneous and where they are discontinuous by replacing large portions of the 
atomistic domain along the glide planes and crack by XFEM approximations.  
The framework will be compared to several direct numerical simulations and its 
advantages and limitations will be discussed. 
 
 
2 INTROCUTION 
 
Analyses of ductile fracture in which individual dislocations are resolved are 
leading to a more fundamental understanding of how materials fail.  We describe 
here a continuum-atomistic model which maintains atomistic resolution at the 
dislocation cores while significantly reducing the number of atoms in the 
simulation by coarse-graining a significant portion of the dislocation slip. Our 
framework is depicted in Figure 1, which shows a dislocation emanating from a 
crack tip.  The subdomains near the crack tip and the dislocation core are modeled 
by atomistics while the rest of the domain is modeled by a continuum. What is 
new about our framework is that the material separating the dislocation core and 
the crack tip subdomains is modeled by a continuum even though the 
displacement field is discontinuous. 
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Figure 1 - Illustration of the continuum-atomistic model of crack tip plasticity [1]. 

 
At the mesoscale, dislocation dynamics simulations have provide useful insight 
into the dislocation networks which form near the crack tip of both single and  
poly-crystals.  However, these models have been based on the superposition of 
isotropic linear elastic solutions of dislocations in infinite domain and as a result 
the behaviour at the dislocation cores is singular.  
 
Fully atomistic simulations of fracture have lead to a better understanding of the 
early stages of ductile fracture.  These simulations are computationally expensive 
an often rely on atomistic potential which are qualitative rather than quantitative.  
Further more, the domain sizes, of even the largest atomistic simulations 
performed to date, are too small to simulate the entire crack tip process zone. 
 
Multiscale models, which concurrently combine continua and atomistics,  have 
the potential to circumvent the limitations of both the dislocation dynamics and 
fully atomistic models.  To date multiscale models of fracture have been largely 
focused on brittle fracture because dislocations which are nucleated at the crack 
tip tend to propagate towards the continuum-atomistic boundary.  So, multiscale 
models of ductile materials must have the ability to adaptively expand the 
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atomistic domain to follows the motion of the dislocations.  This leads to a 
situation where the number of atoms in the model quickly becomes prohibitive.   
 
Our framework combines the Bridging Domain Method (BDM) [1][2] with the 
eXtended Finite Element Method (XFEM) [3].  The BDM is a hierarchical 
overlapping domain decomposition scheme where compatibility between the 
atomistic and continuum domains is enforced using Lagrange Multipliers. 
Material far from dislocations cores is modeled as a continuum using the XFEM 
whereas Molecular Mechanics is used to resolve the near core behaviour and 
dislocation reactions. The XFEM-BDM framework allows the coarse-graining of 
both regions where the atomistic displacements are homogeneous and where they 
are discontinuous by replacing large portions of the atomistic domain along the 
glide planes by the XFEM dislocation approximation developed by Gracie et al. 
[4].   
 
 
 
 
3 MODEL, DISCRETIZATION AND APPROXIMATION 
 
Consider a domain Ω , decomposed into overlapping subdomains CΩ  and AΩ , 
where a continuum and atomistic model are used, respectively.  The coupling 

domain is denoted by B C AΩ =Ω ∩Ω .  Let ( )C
u x  be the displacement field in 

CΩ , W  be the strain energy density of the continuum and extW  be the work of 

external forces. Let A

iu  be the displacement of atom i , ijr  be the distance between 

atoms i  and j  and ijV  be the potential energy of the bond between atoms i  and 

j .  Furthermore, let  ( )λ x  be the Lagrange multiplier field in BΩ  which enforces 

compatibility between CΩ  and AΩ .  The energies of the continuum and atomistic 

models are weighted in BΩ , by a weight function ( )Cα x , which ensures that 

energy is not counted twice in BΩ .   The total energy of the system is given by 

 ( ),C ext A C AWΠ = Π − +Π + −λ u u , (1) 

 
 
where 

 ( ) ( )( )
C

C C CW dα
Ω

Π = Ω∫ x u x , (2) 

 

 ( )( ) ( )1A C

ij ij

i i j

V rα
≠

Π = −∑∑ x  (3) 

and 

 ( ) ( ) ( )( ),
B

C A A C A

i i

i∈Ω

− = ⋅ −∑λ u u λ x u x u . (4) 
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The weight function ( )Cα x  ranges between 0 and 1; ( ) 1Cα =x  in \C BΩ Ω  and  

( ) 0Cα =x  in \A BΩ Ω .  In  BΩ , ( )Cα x  decreases monotonically from 1 in the 

fully continuum domain to 0 in the fully atomistic domain. 
 
We now further consider that the domain contains several dislocations and cracks.  
We will assume that all dislocation cores and crack tips are located in the fully 

atomistic domain \A BΩ Ω .  Let the surfaces where dislocation slip has occurred 

be denoted by DΓ .  It is convenient to define DΓ  in terms of two level set  ( )f x  

and ( )g x , i.e. 

 ( ) ( ){ }| 0 and g 0D fΓ = = <x x x  (5) 

This definition is illustrated for a dislocation loop in Figure 2. The slip plane of 

the dislocation loop is defined by ( ) 0f =x  and the portion of the slip plane 

where slip has occurred is defined by  ( ) 0f =x  and ( ) 0g <x .   
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ẽ
3

g(x) = 0

f(x) = 0

n = ∇f

ΓD

ΩD

 

Figure 2 - Description of a dislocation loop by two level sets ( )f x  and ( )g x . 

 
 

Similarly, cracks will be defined by the level sets ( )φ x  and ( )ψ x  such that 

 ( ) ( ){ }| 0 and 0C φ ψΓ = = <x x x  (6) 

 
The continuum displacement approximation is decomposed into the standard 

finite element part  ( )FE
u x   and an enrichment part ( )ENR

u x : 

 ( ) ( ) ( )C FE ENR= +u x u x u x  (7) 

The standard finite element part is given by 
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 ( ) ( )FE

I I

I

N
∀

=∑u x x u  (8) 

where ( )IN x  are the finite element shape functions and Iu  are the nodal 

displacements.  The enriched part of the approximation is given by  
 

 

( ) ( ) ( )( ) ( )( )

( ) ( )( ) ( )( )
S

S

D

C

ENR

J J

J

K K K

K

N H f H f

N H Hφ φ

∈

∈

 = − 

 + − 

∑

∑

u x b x x x

x x x a
 (9) 

where b  is Burgers vector, Jx  is the position of node J , SD  and SC  are the 

nodes with supports cut by DΓ  and CΓ , respectively.  We note that the sets SD  

and SC  are small subsets of all nodes on the mesh. 
 
Remark 1: The enriched part of the continuum displacement Eq. (9) is the critical 
addition to the standard Bridging Domain Method, which allows the 
discontinuities of cracks and dislocations to be smoothly transferred from the 
atomistic domain to the continuum domain. 
 
Remark 2: The first term on the right hand side of Eq. (9)  allows dislocations to 
be modeled in the continuum independently of the mesh.   Burgers vector b  is 
assumed to be known, and so the dislocation part of the enrichment does not lead 
to any additional degrees of freedom in the continuum model.  This is a standard 
assumption in mesoscale models of dislocations and is reasonable here since the 
near core slip which is non-constant in magnitude is modeled by the atomistic 
domain.   
 
Remark 3: The second term on the right hand side of Eq. (9)  allows cracks to be 
modeled in the continuum independently of the mesh.   The parameters Ka  are 

addition degrees of freedom at the nodes in SC  and the magnitude of the 
parameters is directly related to the crack opening displacement of the element 
connected to the nodes. 
 
We will weakly enforce the compatibility constraint Eq. (4) by approximation the 
Lagrange Multiplies by a field, i.e. 
 

 ( ) ( ) , B

L L

L

N λ= ∈Ω∑λ x x λ x . (10) 

 
 
The discrete equations are obtained by finding the stationary point of Eq. (1) with 

respect to , ,I k Lu a λ  and A

αu .   
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4 NUMERICAL EXAMPLES 
 
We will student the problem of an edge crack in a grapheme sheet.  Other 
examples of evolving dislocations will be presented at the conference; however, 
due to space limitations and in the interest of clearly describing our framework, 
we have restricted ourselves to a single illustrative example.  Multiscale 
simulations of graphene sheets are well suited to demonstrate the usefulness of the 
overlapping domain decomposition scheme since the generation of meshes which 
conform to the lattice is difficult.  Furthermore, the simulation of defected 
graphene with the coupled Bridging Domain Method and Extended Finite 
Element Method framework will demonstrate its robustness for complex lattice 
structures. 
 
The second generation Tersoff-Benner REBO potential [5] is used to model the 
graphene at the atomic scale.  Under a small displacement assumption, graphene 
is isotropic and the Lame constants are =5.428 eV µ  and  =7.148 eV λ .   

 
We will compare the accuracy of the coupled XFEM-BDM method to a fully 
atomistic direct numerical simulations. For this purpose, the change in energy of 
the atoms in the fully atomistic domain due to applied loads relative to pristine 
unloaded sheets is considered. Let the relative error in the change in energy per 
atom be defined as 

 
( )max

A DNS

U

DNS

U U
e

U

α α
α

αα

−
=  (11) 

and the relative error in the change in energy in the subdomain \A BΩ Ω  be 
defined as  
 

 ( )21

B

U U

AB
e e

n
α

α∈Ω

= ∑  (12) 

 

where ABn  is the number of atoms in BΩ  and AUα  is the change in the energy of 

atom α  computed by the coupled model.  DNSUα  is the change in the energy of 

atom α  from the direct numerical simulation, and ( )max DNSUαα
 is the maximum 

change in the energy of an atom in the direct numerical simulation.   We also 
examine the error in the displacements using similar measures of error 
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Consider a 247.18Å x 208.03Å graphene sheet as shown in Figure 3a; the origin 
of the domain is located at the center of the sheet.  The sheet is oriented such that 
the zig-zag direction corresponds to the x-axis. A crack is created by deleting the 
bonds from the atomistic model which are cut by the line 9.5y = Å for 

( )-123.59,10  x∈ . The bottom edge of the domain is fully constrained. 

Displacement boundary conditions are applied to the top edge: 0.01x xu L=  and 

0.01y yu L= , where 247.18xL = Å and 208.03xL = Å.  
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247.18Å
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Figure 3 – a) Schematic of the problem of a graphene sheet with an edge crack. b) Domain 

decomposition and discretization of the problem of a graphene sheet with an edge crack for 

the combined Bridging Domain Method and Extended Finite Element Method model. Green 

and blue lines denote the FEM and the Lagrange multiplier meshes, respectively; Black 

disks represent Heaviside enriched nodes 

 
The domain is discretized by a 21x21 triangular element mesh.  We will compare 
the solution of the combined XFEM-BDM model to that obtained by direct 
numerical simulation using a fully atomistic model. Figure 3b shows the domain 
decompositions and discretization of the combined model; the purely atomistic 

subdomain, \A BΩ Ω , consists only of the domain of the 18 elements surrounding 
the crack tip. So the bridging domain consists of the elements immediately 

surrounding the purely atomistic domain and the weight ( )Cα x  varies linearly 

from 0 to 1 within one element of the continuum.  
 

In this example the zero contour of the function ( )φ x which defines the location 

of the crack in the continuum is given by the problem description: 

( ) ( ){ }, , | 123.59,10 , 9.5 0x y x y x yφ = ∈ = = . In general, ( )φ x  must be 

determined from the atomistic displacements, i.e. from the location of the crack in 

the atomistic model, but in this problem it is straightforward. From ( )φ x  the set 

of Heaviside step function enriched nodes (those in set SC ) are determined.  
These are illustrated by black disks in Figure 3b.  
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We note that most concurrent multiscale models, such as the standard Bridging 
Domain Method and the Quasiconitnuum method, require atoms along the entire 
crack surface.  In the combined XFEM-BDM model we can significantly reduce 
the number of atoms in the model by modeling a long portion of the crack by a 
discontinuity in the continuum model.  This is accomplished by only 44 
continuum enriched degrees of freedom. The enrichment of the continuum 
elements in the blending domain allows cracks to pass from the atomistic model 
to the continuum model.  
 
Figure 4 shows the relative errors per atom from the combined XFEM-BDM 

model with respect to the direct numerical simulation for atoms in \A BΩ Ω .  The 

maximum relative error in the change in energy per atom is 25.5 10  −×  and occurs 
at the crack tip while that the maximum relative error in the displacement of an 

atom is 27.8 10  −×  and occurs at the bridging domain boundary.  The error in the 
energy is highly localized while that in the displacements is more diffuse. The 
relative errors in the change in the energy and in the displacements of atoms in 

\A BΩ Ω  are  43.6 10  −×  and 34.2 10  −× , respectively. The displacement errors 
tend to localize at the coupling domain boundary likely because of ghost forces 
from the coupling constraint and because the strains in the continuum model are 
highest in the coupling domain and so the error induced by assuming that the 
continuum is linear elastic and isotropic are largest there.  Other sources of error 
in the model come from free surface effects not captured by the continuum model.  
Theses occur along the vertical edges of the domain and along the crack surfaces. 
The loss in accuracy from the homogenization of the crack is not significant given 
the reduction in the number of degrees of freedom - the combined XFEM-BDM 
model uses only 1254 free atoms compared to the 19788 atoms used in the direct 
numerical simulation. 
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Figure 4 - Relative errors per atom of atoms in \A BΩ Ω  of the combined Extended Finite 

Element Method and Bridging Domain Method model. a) Relative error in the change in 

energy per atom b) Relative error in the displacement per atom 
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5 Conclusions 
 
We have developed a concurrent multiscale method for coupling atomistics and 
continua when the deformations at the continuum level corresponding to the 
atomistic phenomena are discontinuous, i.e. in the presence of dislocations and 
cracks.  The framework is based on the Bridging Domain Method, where 
compatibility between overlapping continuum and atomistic domains is enforced 
by Lagrange multipliers.  The key contribution of this work is the coupling of the 
Extended Finite Element Method with the atomistic model. This allows for 
discontinuities in the atomistic domain to be effectively passed into the continuum 
domain. 
 
In our framework, atomistic models of material behaviour are used in the region 
near crack tips and dislocation cores; whereas a continuum model is adopted in 
the rest of the domain.  The discontinuity due to a crack is incorporated into the 
continuum model by enrichment of the standard Finite Element Method 
approximation by the Heaviside step function.  Similarly, slip across the glide 
plane in the continuum domain is modeled by a tangential step function 
enrichment. 
 
Though we have applied the method to several problems; due to space limitations 
here, only the results for an edge crack under mixed mode loading are presented -  
further results will be present at the conference.  The simulation using the 
combined Bridging Domain Method and Extended Finite Element Method 
(XFEM-BDM) was compared to direct numerical simulations (DNS) by fully 
atomistic models.  It is shown that the accuracy of the XFEM-BDM is acceptable 
given the large reduction in the number of degrees of freedom.  In the example 
considered here, the continuum model was linear but the XFEM-BDM model can 
be easily extended to a nonlinear hyperlastic constitutive model based on a 
Cauchy-Born approximation.   
 
In traditional concurrent multiscale simulations, discontinuities from cracks and 
dislocation slip must be represented by the atomistic model.  In contrast, the new 
method described here allows large portions of these discontinuities to be 
represented by a continuum.  Therefore, a significant reduction in the number of 
atomistic degrees of freedom is possible.  Furthermore, the numerical examples 
presented here show that this can be accomplished without compromising 
atomistic resolution and accuracy in the near crack tip or dislocation core regions. 
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