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The energetics of two unequal-length collinear cracks is considered in Mode I, II, 
III loadings. The material force, i.e., the energy change accompanying the 
translation of each crack, the expanding moment accompanying their isotropic 
expansion, and the total potential energy of the system are evaluated. The analysis 
is performed for remote uniform load normal to the cracks plane using the 
concept of the J and M path-independent integrals. The closed form exact solution 
to this interaction problem is obtained as a function of cracks dimensions and 
their spacing. While both the material force and the moment tend to infinity as the 
distance between the inner crack tips approaches zero, the total strain energy of 
cracks converges to the limit. The material force decays rapidly to zero as the two 
cracks become a few lengths apart. Comparisons of the obtained results with 
those for two equal cracks and with other available solutions are considered and 
discussed.  
 
 
1. Introduction 
 
 
Many models for the average effective properties of elastic solids are based on the 
approximation of non-interacting inhomogeneities which utilize various elastic 
solutions for an isolated crack. We consider here the strain energy of two unequal 
cracks that could lead to a deeper understanding of pair interaction effects of 
microcracks.  The energy required to form one crack has been found in analytical 
form for many various geometrical arrangements and load conditions. In the case 
of two equal collinear Griffith cracks, in an isotropic material, opened by uniform 
pressure, the analytical solution in a closed form was obtained by Willmore [1] in 
1949. Lowengrub and Srivastava [2] treated an infinitely long layer containing 
two equal collinear cracks located parallel to its surfaces and opened by an 
arbitrary internal pressure, by reducing the problem to the Fredholm integral 
equation. The analytical expression for the energy at relatively large distance 
between cracks was obtained. Adams [3] solved the problem of a layer containing 
an arbitrary number of unequal-size cracks. The problem was reduced to singular 
integral equations and the crack energy was determined by quadratures.  
 
 
When the pressure is constant, the energy in the aforementioned cases of two or 
more cracks has been determined by integration of the shape of the deformed 
cracks over the crack faces. Along with the direct integration approach, the crack 
energy can be treated by different methods, including the application of the J- and 
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M- integrals. For instance, Budiansky and O’Connell [4] used the relations 
between the energy and these integrals when treating the energy of an elliptic 
crack. In this paper, we calculate the energy of two cracks located in infinite 
elastic medium that is subjected to remote uniform load, invoking the relationship 
[5, 6] between the energy, J- and M- integrals.  In case of cracks, the J- and M- 
integrals can be evaluated as long as the solution for the stress intensity factors 
(SIF) is available. The problem of the energy then can be reduced to calculation 
of the SIFs. 
 
 
The interaction of two unequal-size collinear cracks for the case of uniaxial 
tension normal to the line of cracks was supposedly first studied by Panasyuk and 
Lozoviy [7]. Applying the Muskhelishvili method, they determined the stress 
intensity factors (SIF) for all four crack tips and expressed them in terms of the 
complete elliptic integrals of the first kind, third kind, and an additional not 
tabulated integral. The SIFs obtained from this solution are also presented in 
graphical form by Rooke and Cartwright [8]. Applying the concept of continuous 
arrays of infinitesimal dislocations, Yokobori et al. [9] reduced the two-crack 
problem to the integral equation and solved it. The closed-form solution was 
presented only for the higher values of SIFs, i.e., for the inner crack tips, and they 
were expressed in terms of the complete elliptic integrals of the first kind, K, and 
the second kind, E. Their results are available in several publications, see, for 
instance, Ref. 10 and the references therein. In this paper we complete the 
Yokobori et. al. solution providing the SIFs for outer tips of collinear cracks, 
compute the J- and M- integrals, and obtain the potential energy of two cracks in 
the closed analytical form.  
 
 
2. Stress Intensity Factors for Two Unequal-length Cracks 
 
 
Consider an infinite elastic solid with two collinear asymmetrical cracks subjected 
to a perpendicularly applied normal stress � at infinity, which causes the body to 
deform in a state of plane strain as shown in Fig. 1. 

 
 
Fig. 1: Two collinear asymmetrical cracks. 
 

2L 2l s 

d 

Klo        Kli Ksi      Kso  



 3 

Let us call the left crack with length  2L - the first crack, and the right crack with 
the length 2l - the second crack. It is supposed that s is the distance of separation 
between the inside tips and d is the distance between midpoints of the cracks. The 
crack geometry can be described by a pair of non-dimensional parameters 
 

 
l
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l
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2

=β            (1) 

 
Similar to the procedure used by Yokobori et al. [9] for the inner crack tips, i, we 
derive the SIFs for outer tips, o, from their solution of the integral equation (8) by 
substituting the corresponding coordinates and taking necessary limits. We 
normalize all the obtained expressions with respect to the value of the SIF of a 
single Griffith crack of length 2l.  
            

�πσ=sK                 (2) 
 
Marking the crack tips by the following subscripts: lo - large crack, outer tip; li – 
large crack, inner tip; so - small crack, outer tip; si - small crack, inner tip, we 
arrive at the expressions in the unified non-dimensional form for all the SIFs  that  
can be written as: 
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 is the ratio of the complete elliptic integral of the second kind, E, to the complete 
elliptic integrals of the first kind, K.   
 
 
 Some observations can be made concerning these equations. In equations (4,5) 
we see that the SIFs for the inner tips, reached at s=0, become infinite while for 
the outer tips, as shown in equations (3,6),  they are still finite as the two cracks 
approach each other. In this case, two cracks form one large crack of length 2 
(l+L) and the values of SIFs for the outer tips are equal to those of the formed 
single crack which takes the following form in non-dimensional notations    
                                                                                                                                                                                
 

α+== 1solo FF               (8) 
 
In the limit, when the distance of crack separation, s, becomes large, the obtained 
values of SIFs agree with the corresponding values for a single crack of length 2l 
or 2L, respectively.  
 
 
When both cracks have an equal size, equations (3-6) simplify and due to the 
symmetry they reduce to two equations.  These equations can be transformed 
exactly to those derived by Willmore [1, 10] and, thus, we recover his results for 
two equal cracks. Willmore expressed the SIFs through the crack tip coordinates, 
and therefore for the transformation of results the conversion property of the 
elliptical integrals given in Ref. [11] should be applied. 
 
 
With the SIFs given by Eqs. (3-6), the driving forces, Gj, for each crack tip are 
determined by the Irwin formula 
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where E is the Young modulus of elasticity and � is the Poisson ratio. The 
subscript j runs over all crack tips: lo, li, so, si. 
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3. Relation between the crack energy, J- and M-integrals of Fracture 
Mechanics 
 
 
The path-independent J-and M- integrals are related to potential energy changes, 
or energy release rates, as a cavity translates or expands isotropically in solids. 
The classical J-integral and the M-integral are defined as follows: 
 
 
 ( )� −=

c
kijijkk dunWnJ �,σ          (10) 

 
 
            ( ) �dunWnxM kijijk

c
k ,σ−= �                         (11) 

 
where, in two-dimensional space, C is a closed curve surrounding the cavity, W is 
the strain energy density, ku  and jiσ  are the components of the displacement and 
stress field, n is the unit outward normal to C, and dl is the infinitesimal arc length 
along the curve C. J and M can be interpreted as the negative of the potential 
energy release rate, as a cavity undergoes a unit translation in certain direction or 
isotropic expansion relative to the origin, and they are called the material force 
and the material scalar (or expanding) moment, respectively. If the curve C 
encloses a system of inhomogeneities, the material force of (10), Jtot , describes 
the change of the total potential energy, U, of the entire system of 
inhomogeneities due to a unit translation. Assume that a system of 
inhomogeneities is inserted into the homogeneous stress field, then the energy of 
this system will be the same wherever the position of the entire system of 
inhomogeneities is and  the total material force on the entire system vanishes,  Jtot 

= 0.  
 
 
According to this, the material resultant force for our system of two cracks 
inserted into the uniform stress field, i.e,. an infinite plane elastic domain 
subjected to constant remote stress, should vanish. This fact has been confirmed 
by direct vector summation of all four material crack driving forces upon 
substitution of (3-6) into (9). Then it leads to 
 

021 =+= JJJ tot  
 
The choice of the contour C in (11) that engulfs the entire system of 
inhomogeneities results in the total scalar moment, Mtot . In the case of two 
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inhomogeneities inserted into the homogeneous stress field, the following relation 
[5,6]  between the potential energy, U, and  J- and M-integrals holds 
 

1����⋅++== ����212 MMUM tot                                                                        (12) 
 
Here, the 1M  and 2M  are integrals calculated for each inhomogeneity, the 1����   is 

the material force on  the 1st inhomogeneity due to mutual interaction  between 
them;  r stands for the position vector of the 1st inhomogeneity with respect to the 
2nd inhomogeneity. 
 
In general, the M-integral depends on the choice of a reference point. If the M-
integral is evaluated in one case with origin at p���� and in another with origin at q���� , 
then [12] 
 

( ) ������������ ⋅−+= pqqp MM            (13) 

            
However, when J = 0, it is obvious from (13) that the M –integral is independent 
of a choice of reference point and this statement is also true for equation (12), 
when  Jtot  = 0. 
In our case of the system of two cracks, we can express the J- and M- integrals by 
the crack driving forces as follows 
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   ( )�sosi GGM +=2                                                                                     (16) 
 
As the two cracks approach each other, the SIFs for the inner cracks tips become 
infinite, both the material force (14) and the scalar moments (15,16) tend to 
infinity as the distance between the inner crack tips approaches zero. As the two 
cracks become a few lengths apart, it can be shown that the mutual interaction 
force decays rapidly to zero. 
  
 
Introducing the force vector driving a crack tip, Gj, the position vector of the 
crack tip, rj, and substituting (14-16) into equation (12), we arrive at the energy 
expression in a simple form 
              

=U  jj �������� ⋅            (17) 
 
where  j is running over all four crack tips: li, lo, si, so. 
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4. Evaluation of the potential energy 
 
 
The crack energy can be computed by substituting (3-6) into (9) and, 
subsequently, substituting the result into equation (17). After some tedious but 
straightforward algebraic manipulations, we arrive at the following expression for 
the energy of two cracks: 
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where     
d
L=1λ ;   

d
�=2λ ;         (19) 

 
k was already defined through the non-dimensional parameters  � and  � 

by equation (7). For convenience, it is rewritten here with these two new non-
dimensional parameters given in (19). 
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Applying the series expansion of e(k) over k [11] and  performing an asymptotic 
study of the series as d��, it can be verified that in the limit as the distance of 
separation between the midpoints becomes large, equation (18) yields the 
expected result for the energy of  two single isolated cracks. 
 
 
In the case of two equal cracks, 21 λλ = ,  or �=1, U assumes a simple form as a 

function of  
d
�2

21 =+= λλλ :                                            
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We can recover the results of Willmore [1] for the energy of two equal cracks by 
applying the conversion property of the elliptic integrals [11] to equation (21). 
The transformation of our results is similar to that mentioned previously for the 
SIF transformation.  
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Fig. 2.  Non-dimensional crack energy, U*, as a function of the crack separation 

distance, �, at � = 1, � = 4 and � = 10. 
 
 
To demonstrate the contribution of the energy of mutual interaction between the 
cracks to the total energy, some numerical results are presented in Figure 2 for 
different crack lengths at  non-dimensional ratios of crack lengths: � =1, 4, and 10.  
We normalize U with respect to the total strain energy of both cracks when they 
are isolated. The graph for the non-dimensional strain energy,  
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is plotted as a function of the non-dimensional distance of separation of two 
cracks,  �. 
It is seen that U* grows as s tends to zero. In the limiting case of small separation, 
U has a bound. As s � 0, we can readily show that  
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This solution is valid for tension loading condition or crack opening Mode I. It is 
also applicable to in-plane shear, Mode II, and anti-plane shear, Mode III when 
the loading conditions are shear stress, �, remote from the cracks. All the above 
results are valid with � replaced by �. For the Mode III, the term (1-�²) should be 
also replaced by (1+�).     
 
      
5. Discussion 
 
 
The problem of two collinear cracks for remote uniform load normal to the cracks 
plane is analyzed. Applying the concept of the J and M path-independent integrals, 
the exact solution to this interaction problem is obtained as a function of the 
cracks dimensions and their spacing.  As the distance between the inner crack tips 
approaches zero, the total strain energy of cracks converges to the limit. 
Comparisons of the obtained results with those for two equal cracks and other 
cases are presented. 
 
The obtained results can be implemented for evaluation of effective properties of 
elastic solids. When the applied load is uniform and constant, the total potential 
energy is related to the change in the corresponding compliance of damaged 
solids because the energy is proportional to the total crack opening area of both 
cracks. So, as long as the solution for the SIF is known, the crack energy and the 
change in elastic moduli can be estimated.   Most of the models for the ensemble 
average properties are based on the approximation of non-interacting 
inhomogeneities and an analytical treatment of the strain energy for two unequal 
cracks could provide more insight into the nature of microcrack interaction, 
especially in the case when pair interaction of near cracks is considered.  
 
It should be noted that equation (12) can be extended to the case of several 
cavities and formula (17) is actually applicable to an arbitrary number of collinear 
cracks. The approach of this work is neither limited to the number of cracks, nor 
to the infinite solid domain. It can be extended to some other configurations for 
the system of two and more cracks. For instance, when provided with the values 
of SIFs for the problems considered in Ref. 3, the total crack energy can be 
calculated based on equation (17). Our results show good agreement with those 
presented therein. However, if the state of applied stress is not homogeneous, 
either due to non-uniform loadings or due to the presence of a boundary or 
interface, an analysis and results would depend on the validity of equation (12) or 
(17). The generalizations and limitations of the present approach will be discussed 
elsewhere. 
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