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Abstract

A general functional form of temporal strength conditions under variable
loading is employed to formulate several new accumulation rules. Unlike
the well known Robinson rule of linear accumulation of partial life-times,
the new rules are sensible to the load order. Comparison with some
experiments show that they much better fit experimental results.

1 Introduction to accumulation rules

Let t = t∗0(σ) be a material durability (life-time) diagram under a constant
stress state σ = σij = const. If the stress state is not constant but a function
of time (process) σ = σij(τ), then the Robinson model of linear accumulation
of partial life-times, [1, 2] (see also [3, 4]), gives equation

∫ t∗

0

dτ

t∗0(σ(τ))
= 1. (1)

for life-time t∗ = t∗(σ) under the process σij(τ).

The well-known non-sensitivity of the Robinson model to the order of load
application can be readily observed from (1): applying first higher and then
lower load or wise-versa lead to the same life-time. However many experiments
on variable loading show that this is generally not the case. Although some
modifications of the Robinson model to address this issue have been reported
in the literature, no one seems to be widely accepted.

To propose a new accumulation rule sensible to the load order, we first remark
that, as shown in [5], any model for time-dependent strength and life-time
analysis can be expressed in the form

ΛT (σ; t) = 1.

Here ΛT (σ; t) is the temporal normalised equivalent stress, NES, that for a
given process σij(τ) and an instant t is defined as infimum of numbers Λ′ > 0
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such that there is no rupture at or before the time t under the process 1
Λ′′σij(τ)

for any Λ′′ > Λ′; if there is no such Λ′, we take ΛT (σ; t) = ∞.

So defined, the temporal normalised equivalent stress functional, NESF, ΛT is
a material characteristics and should be identified from experiments and/or
a model. The definition implies that the functional ΛT (σ; t) is non-negative
positively-homogeneous of the order +1 in the first argument and non-decreasing
in the second argument, that is

ΛT (kσ; t) = kΛ(σ; t) ≥ 0 for any k > 0, ΛT (σ; t2) ≥ ΛT (σ; t1) if t2 > t1.

These properties make Λ uniquely determinable and narrow down the admis-
sible forms of Λ.

Particularly, the Robinson rule (1) can also be re-written in the form

ΛTR(σ; t) = 1, (2)

where ΛTR(σ; t) is the minimal solution Λ of the equation

∫ t∗

0

dτ

t∗0(σ(τ)/Λ)
= 1.

In Section 2 we give an explicit solution of this equation leading to an explicit
expression for ΛTR obtained in [5] for the Basquin-type durability diagram.

On the other hand, the temporal rupture criterion under constant uniaxial
loading σ = const starting at t = 0 can be written as |σ| = σ∗(t), where the
function σ∗(t) gives another form of the durability diagram and is inverse to
the function t∗0(σ), i.e. the equality |σ| = σ∗(t∗0(σ)) is identically satisfied
for any σ. Similarly, the temporal rupture criterion under constant multiaxial
lading σij = const started at t = 0, can be written as |σ| = σ∗(σ̃; t), which can
be reformulated in terms of the NES as ΛT (σ; t) = 1, where

ΛT (σ; t) :=
|σ|

σ∗(σ̃; t)
. (3)

Here |σ| is a matrix norm of the tensor σij, e.g., |σ| =
√∑3

i,j=1 σijσij, and

σ̃ij := σij/|σ| is the unit tensor presenting the stress tensor σij shape. Making
formal manipulations, we have from (3),

ΛT (σ; t) =
|σ|

σ∗(σ̃; 0)
+

∫ t

0

|σ| ∂

∂ξ

[
1

σ∗(σ̃; ξ)

]
dξ

=
|σ|

σ∗(σ̃; 0)
+

∫ t

0

|σ| ∂
∂t

[
1

σ∗(σ̃; t− τ)

]
dτ =

∂

∂t

∫ t

0

|σ|
σ∗(σ̃; t− τ)

dτ. (4)

Hinted by (4), we extend the form for ΛT also to variable processes σij(τ),
such that σij(τ) = 0 at τ < 0, introducing rupture criterion

ΛTS
1 (σ; t) = 1,
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with the following NESF

ΛTS
1 (σ; t) := max

t′≤t
Λ̂

TS

1 (σ; t′), Λ̂
TS

1 (σ; t′) :=
∂

∂t′

∫ t′

−0

|σ(τ)|
σ∗(σ̃(τ); t′ − τ)

dτ,

that can be interpreted as a linear accumulation rule for partial NES, a coun-
terpart of the Robinson rule of linear accumulation of partial life-times. If the
durability diagram can be we presented as a product,

σ∗(σ̃; t) = σ0(σ̃)σ∗∗(t), (5)

where the scalar functions σ0 and σ∗∗ are material characteristics, then Λ̂
TS

1

after integrating by parts is reduced to

Λ̂
TS

1 (σ; t′) =
|σ(t′)|

σ0(σ̃(t′))σ∗∗(0)
+

∫ t′

−0

|σ(τ)|
σ0(σ̃(τ))

∂

∂t′

[
1

σ∗∗(t′ − τ)

]
dτ

=
|σ(t′)|

σ0(σ̃(t′))σ∗∗(0)
−

∫ t′

−0

|σ(τ)|
σ0(σ̃(τ))

∂

∂τ

[
1

σ∗∗(t′ − τ)

]
dτ

=

∫ t′

−0

1

σ∗∗(t′ − τ)
d
|σ(τ)|

σ0(σ̃(τ))
.

Here the last integral should be understood in the Stiltjes sense if the function
σ(t) is discontinuous.

By similar argument one can also arrive at the following more general non-
linear (power-type) rule of NES accumulation,

ΛTS
β (σ; t) := max

t′≤t
Λ̂

TS

β (σ; t′) = 1, (6)

Λ̂
TS

β (σ; t′) :=

[
∂

∂t′

∫ t′

−0

∣∣∣∣
σ(τ)

σ∗(t′ − τ)

∣∣∣∣
β

dτ

]1/β

=

[∫ t′

−0

1

[σ∗∗(t′ − τ)]β
d

∣∣∣∣
σ(τ)

σ0(σ̃(τ))

∣∣∣∣
β
]1/β

, (7)

where β 6= 0 is a material constant and the last equality holds under condition
(5). For a constant multiaxial lading σij = const started at t = 0, expresion
(7) reduces to (3) for any β.

One can see that a linear combination of the terms (7) leads to even more
general non-linear rule of NES accumulation

ΛTS
comb(σ; t) := max

t′≤t
Λ̂

TS

comb(σ; t′) = 1, (8)

Λ̂
TS

comb(σ; t′) :=
N∑

n=1

αnΛ̂
TS

βn
(σ; t′), (9)
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where the numbers βn, αn are material parameters such that
∑N

n αn = 1, to
ensure that ΛTS

comb(σ; t) reduces to (3) for σij = const started at t = 0.

Note that for fatigue the counterparts of the accumulation rules presented in
this section were given in [6].

2 Accumulation rules for Basquin-type

durability diagram

2.1 General loading

Consider the case of the durability diagram under constant uniaxial or mul-
tiaxial loading σ = const starting at t > 0 described by the Basquin-type
relation

|σ| = σ∗(σ̃; t) where σ∗(t) = σ0(σ̃)t−1/b, (10)

Here b is a material constant and σ0 = σ0(σ̃) is a material characteristics
possibly depending on the unit tensor σ̃. Note that (10) is a special case of
relation (5) with σ∗∗(t) = t−1/b. Durability diagram (10) can be also presented
as

t∗0(σ) =

( |σ|
σ0

)−b

. (11)

Then the Robinson rule (1) can be written in form (2) of the NES has the
following form [5],

ΛTR(σ; t) :=

[∫ t

0

∣∣∣∣
σ(τ)

σ0(σ̃(τ))

∣∣∣∣
b

dτ

]1/b

=

[∫ t

0

dτ

t∗0(σ(τ))

]1/b

.

For a uniaxial process σ0 is a constant if σ(τ) does not change sign.

On the other hand, the functional Λ̂
TS

β (σ; t′) for durability diagram (10) be-
comes

Λ̂
TS

β (σ; t′) =

[
∂

∂t′

∫ t′

−0

∣∣∣∣
σ(τ)

σ0(σ̃(τ))

∣∣∣∣
β

(t′ − τ)β/bdτ

]1/β

(12)

=

[∫ t′

−0

(t′ − τ)β/bd

∣∣∣∣
σ(τ)

σ0(σ̃(τ))

∣∣∣∣
β
]1/β

.

Particularly, for β = b expression (12) implies that Λ̂
TS

b (σ; t) = ΛTR(σ; t), i.e.,
for the Basquin durability diagram, the Robinson linear summation rule for
partial life-times is a special case of the non-linear rule of NES accumulation
(6)-(7) with β = b.
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2.2 Uniaxial step-wise loading

Consider a uniaxial loading σ(τ) =





0, τ < t0 = 0

σk, tk−1 ≤ τ < tk, 0 < k < K − 1

σK , tK−1 ≤ τ

,

σ(τ) ≥ 0. Under such process σ0 is constant in the Basquin durability diagram
(11), and the Robinson rule (1) gives the following equation for cumulative
durability t = tK ,

K∑

k=1

rk = 1,

where

rk :=
tk − tk−1

t∗0
= (tk − tk−1)

(σk

σ0

)b

.

In terms of the NESF ΛTR, this is equivalent to equation (2), where

ΛTR(σ; t) = ΛTS
b (σ; t) = Λ̂

TS

b (σ; t)

=
1

σ0

[
k′−1∑

k=1

σb
k(tk − tk−1) + σb

k′(t− tk′−1)

]1/b

=

[
k′−1∑

k=1

rk + rk′

]1/b

, (13)

k′ is such that tk′−1 < t ≤ tk′ , rk′ := (t− tk′−1) (σk′/σ
0)

b
.

On the other hand, for the same process the general power-type accumulation
NES is

ΛTS
β (σ; t) = max

0≤t′≤t
Λ̂

TS

β (σ; t′),

Λ̂
TS

β (σ; t′) =
1

σ0


 ∑

tk−1<t′
(σβ

k − σβ
k−1)(t

′ − tk−1)
β/b




1/β

. (14)

Since ΛTS
b (σ; t) = ΛTR(σ; t), it is not sensitive to the load order, while ΛTS

β (σ; t)
is, if β 6= b. To illustrate this, let us consider the two-step loading, K = 2, and
write (14) for t = t2 > t1 as

Λ̂
TS

β (σ; t2) =
1

σ0
max

t1≤t′≤t2

[
σβ

1 t′β/b + (σβ
2 − σβ

1 )(t′ − t1)
β/b

]1/β

= max
0≤r′≤r2

[
(r1 + sbr′)β/b + (1− sβ)r′β/b

]1/β
. (15)

where s = σ1/σ2 is the parameter of the load order, i.e. s < 1 corresponds
to the low-to-high order of loading, while s > 1 to the high-to-low order.
Particularly,

ΛTS
1 (σ; t2) =

1

σ0
max

t1≤t′≤t2

[
σ1t

′1/b + (σ2 − σ1)(t
′ − t1)

1/b
]

= max
0≤r′≤r2

[
(r1 + sbr′)1/b + (1− s)r′1/b

]
.
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By (13),

ΛTS
b (σ; t2) =

1

σ0

[
σb

1t1 + σb
2(t2 − t1)

]1/b
= [r1 + r2]

1/b (16)

Equating (15) and (16) to 1, we obtain the relation between the partial life
times r1 and r2 in the linear Robinson and NES accumulation rules. In Fig. 1
the straight line corresponds to the Robinson rule, and the curves correspond
to the linear NES accumulation rule for b = 5 and labelled with the value
of s. The high dependence on s shows the high dependence of the durability
predictions on the order of loading.

0.2 0.4 0.6 0.8 1
r1

0.2

0.4

0.6

0.8

1

r2

b = 5

2

0.5

1.

1.5

0.67

Figure 1: Deviation from the Robinson rule (straight line) associated with
NESF ΛTS

1 for b = 5 at several values of s .

3 Comparison with experiment

Let us compare some experimental results with the durability predictions
given by the Robinson linear accumulation and by the NES linear accumu-
lation rules. Some durability experiments for an aluminium alloy at 180◦C
under uniaxial constant and variable (step-wise) stress processes are reported
in [7]. Fitting the results from [7, Table 2] for constant loading to the Basquin
durability diagram (11), we obtained the following values for its parameters,
σ0 = 56109 lb

in2 h
1/b, b = 5.68.

Fig. 2-7 show the graphs of [Λ̂
TS

1 (σ; t)]b, [ΛTS
1 (σ; t)]b and [ΛTR(σ; t)]b vs. time,

calculated for the 2-step Low-to-High and High-to-Low tests from [7, Tables
3, 4], as well as the test rupture times. The loading program is given in the

figure captions. The graph for [Λ̂
TS

1 (σ; t)]b and [ΛTS
1 (σ; t)]b coincide except on

small parts for s > 1.
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Figure 2: [ΛTS
1 (σ; t)]b and [ΛTR(σ; t)]b vs. t;

[211h @ 14000 lb/in2+200h @ 20000 lb/in2]
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Figure 3: [ΛTS
1 (σ; t)]b and [ΛTR(σ; t)]b vs. t;

[115h @ 18000 lb/in2+237h @ 20000 lb/in2]
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Figure 4: [ΛTS
1 (σ; t)]b and [ΛTR(σ; t)]b vs. t;

[114h @ 20000 lb/in2+573h @ 18000 lb/in2]
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Figure 5: [ΛTS
1 (σ; t)]b and [ΛTR(σ; t)]b vs. t;

[30h @ 24000 lb/in2+670h @ 18000 lb/in2]
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Figure 6: [ΛTS
1 (σ; t)]b and [ΛTR(σ; t)]b vs. t;

[69h @ 20000 lb/in2+2590h @ 14000 lb/in2]
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Figure 7: [ΛTS
1 (σ; t)]b and [ΛTR(σ; t)]b vs. t;

[93h @ 20000 lb/in2+2751h @ 14000 lb/in2]
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Conclusion

One can see that discrepancy between the life-time theoretical predictions and
considered experiments is from 2 to 19 times less, when using linear NES accu-
mulation, than when the Robinson linear rule of partial life-times accumulation
is used. Thus the linear NES accumulation rule seems to be a viable alterna-
tive to the Robinson rule. Further improvements in the life time prediction
can be obtained using e.g. the combined NES accumulation rule (7)-(9).
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