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ABSTRACT

In many materials of both scienti�c and technological interest grain boundaries control the material

properties. Important examples include structural intermetallics, high temperature superconduc-

tors and ceramic varistors. In these materials the grain boundaries can, to a �rst approximation,

be divided into \good" boundaries with favorable properties and \bad" boundaries that degrade

the material performance. Grain boundary engineering (GBE), which is also called grain bound-

ary design, involves using sophisticated processing procedures to increase the fraction of the grain

boundaries which are \good". We de�ne the fraction of the boundaries which are \good" to be c

and study the properties of model GBE systems as a function of c. The �rst step in this analysis

is to generate realistic polycrystalline microstructures. We do this by using well established grain

growth algorithms. The most important parameter in the polycrystalline microstructures we gen-

erate is the average grain size g. We then randomly choose a fraction c of the grain boundaries in

the microstructure to be strong and the remainder, 1 � c, to be weak. We also de�ne an energy

ratio, �, which is the ratio of the weak boundary energy to the strong boundary energy. Scaling

laws for the roughness of quasistatic fracture surfaces in GBE microstructures will be compared

with those which apply to diluted hypercubic lattices and with large scale simulations of realistic

polycrystalline microstructures.

1. INTRODUCTION

It has been realised for some time that it is possible to improve the corrosion properties

of intermetallic materials by increasing the fraction of grain boundaries which are \special"

[1]. Special boundaries in this application are typically �(3n) boundaries[2]. These special

grain boundaries signi�cantly enhance corrosion resistance because they are themselves re-

sistant and also because they do not allow di�usion of the corrosive agents into the interior

of the material. The corrosion susceptibility of these GBE materials is observed to decrease

dramatically for c > cWBP = 0:77(1), which is the point at which weak boundaries cease to

percolate in three dimensional polycrystalline microstructures[3]. There is a second impor-

tant percolation threshold in GBE materials which occurs at the onset of an in�nite cluster of

strongly connected grains. The strong aggregate percolation threshold in three dimensional

polycrystalline samples occurs at, cSAP = 0:12(2)[3]. There is thus a broad regime in which

a strongly connected aggegate of grains exists but at the same time a path of weak grain

boundaries exists through the material. This \interpenetrating phase" regime is typical of

percolating microstructures in three dimensions. In two dimensional polycrystalline systems

this interpenetrating phase is absent and cSAP = cWBP = 0:38(1)[3], which is slightly higher

than the bond percolation threshold for honeycomb lattices where cH = 0:347.

The minimal energy surface or critical manfold (CM) is a �rst approximation to a qua-

sistatic fracture surface[4] and it is also the surface on which voltage �rst localises in ceramic

superconductors[5,6]. The CM is singular at cSAP and its scaling properties have been well
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studied for hypercubic lattices [7-12]. In the next section, Section 2, we summarise the scal-

ing laws for the roughness of these interfaces both near to and away from the percolation

threshold. In section 3 we show how these scaling laws can be straightforwardly extended to

the study of GBE materials. In this section we test the three dimensional roughness scaling

laws using large scale simulations of CM's in model polycrystalline materials. Section 4

contains some concluding remarks.

2. CRITICAL MANIFOLDS IN HYPERCUBIC LATTICES

We collect together the results found for minimum energy surfaces in bond diluted

hypercubic lattices, where p is the fraction of bonds which are \strong" while a fraction

1� p are weak[7-12]. The energy of the strong bonds is taken to be unity while the energy

of the weak bonds is �, so the energy ratio is �. We restrict our attention to the case of small

�, which is of most experimental interest.

In the two limits p = 0 and p = 1 the system is uniform and cleavage occurs. The energy

of the minimum energy interface is E = �Ld�1 (p=0) and E = Ld�1 (p = 1) corresponding

to a cleavage plane. The roughness is zero, ie. w = (< h2 > � < h >2)1=2 = 0.

At the percolation threshold and for � ! 0, the manifold energy is of order one as we

only need to cut one singly connected strong bond to separate the network. At pc, we thus

have, E � 1 and w / L. Using �nite-size scale theory, or the nodes/links/blobs model it is

easy to show that near the percolation threshold (pc),

E / jp� pcj
(d�1)� ; and w / jp� pcj

�� (1)

where � is the correlation length exponent. If the energy contrast is �nite, the roughness of

the interface is not as large, as an excursion of radius r from a 
at interface now costs energy

proportional to �rd�1. Since there are direct paths across the in�nite cluster which cut a

number of strong bonds of order 1, we �nd a critical excursion size rc by setting �rd�1
c = 1,

which yields, rc / ��1=(d�1). The roughness due to percolative 
uctuations at pc is thus of

order rc instead of L. The scaled roughness no longer diverges on approach to pc, instead it

reaches a plateau. The size e�ects due random manifold scaling ie w / rc(L=rc)
� still occur.

Here � is the roughness exponent.

In the regime p >> pc the theory of periodic elastic media applies[13,11,12]. The key

quantity in the theory is the critical length Lc which is the typical size of the cleavage regions

on the critical manifold. In the limit p ! 1 the critical length diverges (Lc ! 1) so that

w = 0. For �nite 1 � p an Imry-Ma argument provides a surprisingly good theory. In the

Imry-Ma argument, we consider a 
uctuation of size l from a 
at surface. According to

the central limit theory, the probability that such a 
uctuation has energy e is given by,

P (e) / e�(e�pS)2=[2p(1�p)S], where S = ld�1 is the number of bonds in the 
uctuation and

(1�p)S=p is the variance in the energy of the surface. This event may occur in many places

and in fact the number of places it may occur is of order L. The typical size of the largest

such 
uctuation is given by,

Ld�1e�(e�pS)2=[2p(1�p)S] = 1 (2)

which shows that the maximum energy gain achieved by these 
uctuations is proportional

to,

Æegain / [2p(1� p)SlnL]1=2 (3)
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The energy cost of such a 
uctuation is given by,

Æecost / [p+ (1� p)�]ld�2 (4)

By comparing these two energies it is evident that at long enough length scales, the energy

gain is always larger than the energy cost in both two and three dimensions. This means

that on long enough length scales these manifolds are always rough. To �nd the \critical

length" or critical sample size at which the critical manifold becomes rough, we �rst set

l / L. Then we equate the two energies (Eq(3) and (4)) and isolate L to �nd that to leading

order[12],

Lc �
(p+ (1� p)�)2

p(1� p)
and Lc � Exp[

a1(p+ (1� p)�)2

p(1� p)
] (5)

for two and three dimensions respectively. a1 is an unknown constant. The roughness of

critical manifolds then scale as, w / (L=Lc)
� . If we consider the roughness in the limits

L!1, �! 0, p! 1, we �nd,

w

L2=3
/ [(1� p)=p]2=3 and

w

L0:41
/ Exp(�ap=(1� p)) (6)

for the two and three dimensional cases respectively. In these expressions we have used the

known values of � = 2=3 in two dimensions[7], and � = 0:41(1) in three dimensions[8,14]. Nu-

merical results for the roughness as a function of p have been presented some time ago[9,10]

though at that time the expressions (6) were not available. Nevertheless it is now evident

that the data in refs. [9,10] are well described by the results (6).

3. CRITICAL MANIFOLDS IN GBE MATERIALS

An example of a critical manifold in a three dimensional polycrystalline microstructure is

presented in Fig. 1. To obtain this �gure, a three dimensional polycrystalline microstructure

was grown using the Pott's model grain growth algorithm[15,16]. This algorithm provides

accurate grain structures for a wide variety of polycrystalline materials. The grain growth

algorithm is actually carried out on hypercubic lattices. Each site i of the lattice has an

index, si, where this index takes one of q values ie. si = 1::::q. In our simulations, we

used q = 256 in two dimensions and q = 100 in three dimensions. Once we have a grain

structure, we assign the bonds in the hypercubic lattice an energy based on the following

rules: If two neighboring sites have the same Pott's index, then the bond is in the grain

interior and the bond has unit energy. If two neighboring sites have di�erent indices, then

the bond is a grain boundary bond. At this point we have to decide which grain boundaries

are \special" or \good" boundaries and which are bad. The rule we used was based on

the normalized di�erence between the site labels of neighboring bonds d = jsi � sj j=q. We

also de�ned the di�erence modulo q, so that labels si = 1 and sj = q di�er by one. With

this de�nition, grain boundaries with d < c are given unit energy and those with d � c are

assigned energy �. That is boundaries with small Pott's label di�erences are considered to

be strong and those with large large Pott's label di�erences are considered to be weak. The

procedure above leads to a polycrystalline microstructure embedded on a hypercubic lattice.

The critical manifold in this microstucture (e.g. Fig. 1) is then found using the maximum


ow algorithm (see e.g. [17] for a recent survey).

We have calculated many of the properties of critical manifolds in both two and three

dimensional GBE materials as a function of the concentration of strong grain boundaries.
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Figure 1: The critical manifold in a three dimensional polycrystalline system whose underlying

cubic lattice is of size 1003. The critical manifold shown here is for the case of a GBE material with

energy contrast � = 0:01 with a fraction of strong boundaries c = 0:2.

In particular, we have calculated the energy of the manifolds, the number of bonds on

the manifold, the fraction of those bonds which are weak and the roughness[3]. Here we

concentrate on developing theories for roughness data as a function of c which is presented

in Fig. 2. In order to understand this data, we need to generalise the analysis of the last

section to the case of GBE materials. As we show below, this is quite straightforward.

We consider the limit � small which is most practical interest. In that limit and for c

small, the critical manifold is entirely on the grain boundaries[18]. In that case the roughness

of the critical manifold is expected to scale as, w / g(L=g)� This is due to the fact that the

average grain size acts as an e�ective lattice constant, so that the e�ective lattice size is L=g.

Near the percolation threshold we again get critical scaling, but now � / gjc � cSAP j
�� .

Similarly, rc ! grc. Finally to �nd the scaling laws valid for c >> cSAP , � ! 0 we write,

w = g(L=gLc)
� where Lc is given by Eqs.(5). From these expressions, we �nd that,

w

L2=3g1=3
/ [(1� c)=c]2=3 and

w

L0:41g0:59
/ Exp(�ac=(1� c)) (7)

for two and three dimensions respectively. One interesting feature of these expressions is

the non-trivial scaling behavior of roughness as a function of grain size. The grain size

dependence of material properties is often critical in applications due to the fact that the

grain size can slowly change with time, especially in high temperature or high stress applica-

tions. The second expression in Eq. (7) is tested against numerical results in Fig. 2, which

presents the data for the roughness of critical manifolds for several values of the energy

contrast. The theoretical predictions are good in three dimensions (see Fig. 2) and also are

surprisingly good in two dimensions (see Ref. [3]). The expressions (7) are valid for c near

one. For smaller c percolative 
uctuations are important and can be also be incorporated

in the scaling theory in a simple way (see ref. [3]). Many other properties of experimental

interest can also be related to Lc[3].

4. CONCLUSIONS
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