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ABSTRACT 

Fast mutipole method (FMM) is applied to Dual BEM for 2-D elastic crack analysis. Dual BEM overcomes 
the mathematical degeneration of the displacement boundary integral equation when the two surfaces of the 
same crack are co-planar, by introduction of the traction boundary integral equation. The concept of 
finite-part integral is applied to deal with the hyper-singular integrals in traction boundary integral equation. 
Crack surfaces are discretized using discontinuous elements to satisfy continuity requirements. In order to 
achieve more run-time and space efficiency, fast mutipole method (FMM) is applied to Dual BEM. Due to the 
realization of mutipole expansion and local expansion, both computational complexity and memory 
requirement is reduced to O(N), where N is the number of DOF. In mutipole expansion, a new form of 
complex Taylor series reduces the number of mutipole moments and local moments. Generalized minimum 
residual method (GMRES) is adopted as iterative solver. Sparse approximate inverse type is selected as the 
left preconditioner. An effective sparsity pattern is developed to reduce the cost of preconditioning and 
improve convergence rate. Two numerical examples are given to verify the numerical method and 
corresponding program. The numerical results of normalized SIF for a center crack in square plate show good 
agreement with that in literature. The results of COD for four cracks in square plate show good agreement 
with FEM results of MSC/MARC. Finally a large-scale numerical example of 3500 irregularly distributed 
cracks in square plate, with 1,054,824 DOF, is given. The numerical results show that the presented fast 
mutipole Dual BEM scheme is very efficient for large-scale crack problems. 

 
1 INTRODUCTION 

BEM is recognized as a powerful method for the study of crack problems because of its 
semi-analytical nature and boundary-only discretization (Cruse [1]). Compared with other 
numerical methods, the reduction in dimensionality dramatically reduces initial data preparation 
and remeshing task in crack growth. Additionally, due to the lack of internal approximations, the 
singular stress field around crack tip can be analyzed more accurately and more efficiently. 
However, due to intrinsic difficulties, the displacement BIE degenerates when the two surfaces of 
one crack are considered co-planar. Dual BEM overcomes the mathematical degeneration caused 
by co-planar surfaces, with the displacement BIE applied for collocation on one of the two crack 
surfaces and the traction BIE on the other (Portela [2]). Based on Dual BEM, a single-region 
formulation can be built for general crack analysis. 
Conventional BEM is not efficient for large-scale problems because of the dense and asymmetric 
matrix form. In order to reduce memory requirement and CPU time, the fast mutipole method 
(FMM) is applied to BEM. Barnes and Hut [3] firstly use a tree data structure and the concept of 
multipole expansion to calculate the matrix-vector product without forming the matrix explicitly. 
The computational complexity and memory requirement for matrix-vector multiplication is 
reduced from O(N2) to O(NlogN). FMM by Greengard and Rokhlin [4] leads to the further 
reduction to O(N) by introducing the concept of local expansion. Fast multipole BEM are 
investigated by many authors: Yamada et al [5] and Peirce et al [6] for 2D elastostatics, Fu et al [7] 
and Popov et al [8] for 3D elasticity problems, Nishimura et al [9] for crack problems of 3D 



 

Laplace equation. 
In this paper, FMM based on complex Taylor series expansion is applied to Dual BEM for 2D 
crack analysis. An improved sparsity pattern of sparse approximate inverse type is applied in 
preconditioning for GMRES solution. Large numbers of cracks in a finite plate is simulated with 
high efficiency and accuracy. The largest scale computed is 1,054,824 DOF. 

 
2 BOUNDARY INTEGRAL EQUATIONS FOR CRACK ANALYSIS 

Consider a 2D elastic solid with a single ideal crack. oΓ  is the outer boundary of the 2D solid. 

c
−Γ  and c

+Γ are the two co-planar surfaces of the crack cΓ . Assuming cΓ  is smooth and free 
from traction, the following displacement integral equations can be obtained. 
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x y x y  stand for the displacement and traction fundamental solutions of 2D 

elastostatics respectively; ,  x y  are the source point and the field point respectively; ,u tβ β  are 

displacement and traction on outer boundary oΓ ; uα∆  is the crack opening displacement (COD) 
on the crack. 
Assuming continuity of both strains and tractions at point x  on the crack cΓ , the following 
traction boundary integral equation can be obtained by differentiating Eq. (2) and applying the 
material constitutive relationship. 
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After discretization on the outer boundary and the crack surface, a system of algebraic equations 
can be built by applying Eqs. (1-3). 
Note that the kernel ( ),S  γαβ x y  has hyper singularity of 

2( )O r− . The concept of finite part 
integral is used to deal with hypersingular integrals (Guiggiani [10]). The use of finite part integral 
requires that the displacement fields should be Holder continuous at source point x . In this paper, 
the crack surfaces are discretized using discontinuous elements to satisfy the continuity 
requirements of the field variables. 

 
3 FORMULATIONS OF FAST MULTIPOLE DUAL BEM (FM-DBEM) 

The boundary integral of kernels can be expanded into complex Taylor series around a selected 
point 0y . For example 
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where x  should be far enough from y  to satisfy 0 0 / 2y y x y− ≤ − . 

This operation is called mutipole expansion. ( )fr
0( , )C ky  and ( )fi

0( , )C ky  are mutipole moments 
centered at 0y . 
Considering the following equations 
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( , ),Tαβ x y ( , )Uαβ x y are expanded instead of relatively complicated ( , ),Sγαβ x y ( , )Dγαβ x y . 



 

In fast mutipole BEM for 2D elastostatics, there are 6 groups of multipole moments used by 
Yamada et al [3], but only 2 groups are used in this paper. Numerical examples show that the 
reduction of multipole moments can enhance the computational efficiency obviously. 
If the mutipole expansion center is shifted to y  from 0y , the new mutipole moments can be 
obtained from the original ones. This translation between mutipole moments is applied when 
mutipole-expansion center is shifted and it is called mutipole moment to mutipole moment 
translation (M2M).  
If the left of Eq. (4) is expanded with respect to source point x  around a selected point 0x , the 
following equation can be obtained: 
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( )lr
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0( , )D kx  are local moments centered at 0x . They can be obtained from the 
mutipole moments centered at 0y . This translation from mutipole moments to local moments is 
called mutipole moment to local expansion translation (M2L). 
If the center of local expansion is shifted to 1x  from 0x , the new local moments can be obtained 
from the old ones. This translation between local moments is applied when local-expansion center 
is shifted and it is called local expansion to local expansion translation (L2L). 
 

4 NUMERICAL IMPLEMENTATION 
The first step of fast mutipole algorithm is construction of a quad-tree structure. The second step is 
iterative process. The iterative process includes computation of mutipole moments (Upward) and 
computation of local moments (Downward). Upward and Downward is executed iteratively until 
proper accuracy is achieved. The details can be found in Greengard [4] and Yoshida [9]. 
In this paper, generalized minimum residual method (GMRES) is adopted as iterative solver. 
Sparse approximate inverse type is selected as the left preconditioner (Michele Benzi [11]). In 
order to reduce the cost of preconditioning and improve convergence rate, an effective sparsity 
pattern is developed.  
For the outer boundary oΓ of the 2D solid, not considering the existence of cracks, we can obtain 
the equation system of matrix form as follows:  

1 =M X B                                    (7) 
For each crack, omitting the effect of other cracks and the outer boundary, we can obtain another 
equation system.  

2
∞∆ =M u T                                   (8) 

1
1M－ of oΓ  and 1

2
−M of all the cracks compose the preconditioner. For cracks with identical 

shape and identical discretization, their 1
2
−M must be identical in local coordinate. Thus the 

computational cost and memory requirement for the preconditioner is so little that can be almost 
ignored. Numerical example shows that the present sparsity pattern can reduce the CPU time and 
memory cost 40%~60%. 

 
5 NUMERIC EXAMPLES 

5.1 Example 1: test example of a center crack in a square plate 
Figure 1 shows the computational model, where 5mmw = , 1MPaσ = ， the material properties 
are: 100MPa,G =  0.3ν = . The center crack is discretized to 16 discontinuous quadric elements. 



 

The order of finite series is taken as 30p = . COD method is applied in computing the SIF. Table 

1 shows the normalized SIF *
1 1 /( )K K aσ π=  of the center crack for different crack sizes. 

Compared with the results from Isida [12], the maximum error in the BEM results is only 0.37%. 

Table 1: Normalized SIF for a center crack with different crack sizes 

 
 
 
 
 

 
Figure 1: Center crack in a square plate 

 

 
Figure 2: Four cracks in a square plate 

 
5.2 Example 2: test example of four cracks in a square plate 
Figure 2 shows the computational model, where 10mm,w =  2 4mm,a =  2 5mm,b =  the 
material properties are: 100MPa,G =  0.3ν = . The outer boundary of the plate is given uniform 
displacement in normal direction, 1.0nu = . This example is analyzed by the present BEM scheme 
and a commercial FEM software MSC/Marc. In BEM analysis, each crack is divided into 10 
discontinuous quadratic elements and the order of finite series is taken as 25p = . In FEM 
analysis using MSC/Marc, 11,890 six-node triangular elements are used totally. The COD obtained 
from these two numerical simulations are compared in Figure 3. 
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Figure 3: Comparison of COD from FM DBEM and MSC/Marc 

a/w 0.1 0.2 0.3 0.4 0.5 

K1
*(Present BEM) 1.0150 1.0511 1.1248 1.2122 1.3308 

K1
*( Isida [12]) 1.014 1.055 1.123 1.216 1.334 



 

5.3 Example 3: 3,500 irregularly distributed cracks in a square plate 
In this example, 3,500 irregularly distributed cracks in a square plate as shown in Figure 4 are 
simulated. The number of DOF is 1,054,824. The order of finite series is 25. The total CPU time 
cost is 8 hours 16 minutes on one PC. Figure 5 displays the COD results of a part of the plate. 

  
Figure 4: 3500 irregularly distributed cracks          

 

 
Figure 5: COD of a part of the plate 

 
6 CONCLUSIONS 

Fast mutipole Dual BEM is applied to 2D crack analysis, and both the computational complexity 
and memory requirement are greatly reduced. This technique is proved by numerical examples to 
be greatly efficient for large-scale crack problems.                                                                               



 

A new form of complex Taylor series is used in mutipole expansion. It can not only reduce 
programming complexity but also enhance computational efficiency. The improved preconditioner 
for GMRES leads to the further reduce of CPU time and memory requirement. 
In this paper, only line cracks are simulated. But the present fast mutipole Dual BEM scheme can 
be easily extended to cracks of various shapes. In further investigation, 3D crack problems and the 
simulation of crack propagation will be investigated using fast mutipole Dual BEM.  
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