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ABSTRACT 

Debonding is one of common failure mechanisms in fibre-reinforced composite materials (Broutman and 
Krock [1]). Both shear forces acting along or perpendicularly to the fibres and tensile forces acting 
perpendicularly to the fibres can contribute to the breakdown of interfacial adhesion between the fibres and 
the matrix. In this paper, deformation due to plane harmonic waves propagating along the fibres and polarised 
perpendicular direction is considered. To describe the behaviour of the material, a second-order continuum 
theory, namely the theory of two-component elastic mixtures (Guz, Rushchitsky [2-4]), is used. Analytical 
solution to the problem is derived and then used to study wave propagation phenomena in fibre reinforced 
composite materials with epoxy matrix. Four types of fibres are considered: Thornel-300 carbon fibres; 
carbon whiskers; zigzag carbon nanotubes; chiral carbon nanotubes. Of particular interest is the case when 
two waves are propagating in the material in-phase or in anti-phase, with the amplitudes strongly dependent 
on the frequency. Theoretical analysis and numerical results indicate that in unidirectional fibre-reinforced 
micro- and nanocomposites, the second mode of the transverse wave, propagating along the fibres and 
polarised perpendicularly to the fibre direction, can be critical to the strength of the material at high 
frequencies. This mode generates anti-phase vibrations in the composite constituents and forces that could 
cause interfacial debonding. This phenomenon can be classified as a new mechanism of debonding in fibre-
reinforced composite materials. 

 
1  THEORETICAL ANALYSIS OF TRANSVERSE WAVE USING TWO-COMPONENT 

ELASTIC MIXTURE THEORY 
The two-component elastic mixture theory was introduced for description of wave propagation 
phenomena within the micromechanics of materials. The theory captures well the dynamics of 
elastic deformation of materials with microstructure (Rushchitsky [5], Bedford et al [6], Bedford 
and Drumheller [7], McNiven and Mengi [8], Rushchitsky [9, 10]) and is in a good agreement with 
experimental data for metal matrix and polymer matrix composites. 

Within this theory, the two-component mixture is treated as two interpenetrating and 
interacting continua. Kinematics of deformation is described by two partial displacement vectors 

; consequently, there are two partial strain tensors (( ) ( ) ( )
1 2 3( , , , ), 1;2i iu u u x x x tα α α α=

r )= ( )
ik
αε , 

relative displacement vector , and two partial stress tensors (1) (2)u u−r r ( )
ik
ασ . Each partial quantity is 

obtained by averaging the corresponding quantity for the matrix or the fibres over the volume of 
the whole material. Equations of dynamics for free waves in a two-component elastic mixture have 
the form of the following six coupled equations 
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Three tensors of elastic constants , two partial densities ( )k

iklmC ααρ , vector of interacting forces 

kβ , and vector of inertial interaction ( )
12

kρ  form the full set of physical constants in the theory of 
mixtures. In the case of a transversally isotropic mixture, often used to describe fibre-reinforced 
materials, the full set consists of 21 constants. 

The following analysis examines the plane waves in mixtures. The plane wave is described by 
partial displacements ( ) ( )( ) ( ), i tou x t u e ξ ωα α −= ⋅

r r , which differ by amplitudes only. Here 

 are the initials amplitudes, {( ) ( ) ( ) ( )
1 2 3, ,o o ou u u uα α α α=

r }o k rξ = ⋅
r r , and rr  is the radius-vector of the 

point ( 1 2 3, , )x x x x= . Christoffel’s equation is transformed into a set of two equations, which 
allows one to write down wave equations for various cases depending on the symmetry of the 
mixture, wave polarisation and directions of wave propagation. 

For fibre-reinforced materials exhibiting transverse isotropy, the transverse wave propagating 
along the axis of material symmetry (for unidirectional materials this will be the fibre direction) is 
considered. Propagation of such wave can be described by a set of two coupled equations (plane 
polarised waves) 
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The plane wave, eqn (2), propagates along the applicate axis and is polarised in the direction, 
perpendicular to it, i.e. vibration occurs along the abscissa axis. Equations (2) take account of all 
possible linear and elastic interactions: between stresses and deformations (constants ), shear 
(constant 

(3)
1313C

1β ) and inertia (constant (1)
12ρ ) forces. Following the standard procedure, a dispersion 

equation can be obtained for the set of Christoffel’s equations. Its solution has the form  
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It follows from the dispersion equation, eqn (3), that the mixture is a dispersive medium, and 

the waves in it always propagate in two modes, i.e. two waves with different wave numbers 
propagating simultaneously. The positive sign in eqn (3) corresponds to the slow (acoustic) mode, 
while the negative sign corresponds to the fast (optic) mode. The former exists for all frequencies, 
and the latter for high frequencies only. Condition 0W =  defines the cutting frequency 
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below which the free wave as if does not exist. 

Solution to eqns (2) has the form of superposition of two harmonic waves (modes) 
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The coefficients of amplitude re-distribution ( ) ( )(1) (2)

1 1, , ,l k l kω ω  are calculated from the 
following formulae 
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The microstructure of the material affects many aspects of wave propagation. In each component 
of the mixture, both modes propagate simultaneously, each having its own amplitude. These 
amplitudes strongly depend on frequency as evidenced by eqn (5). One of the consequences of this 
dependence is known as the energy pumping from one mode to the other [6]. This paper examines 
another aspect, namely, the sign change with the frequency for the functions given by eqn (5). As a 
result of the sign change, the amplitudes of the partial vibrations (same mode vibrations in the 
different components of the mixture) can be of the opposite signs, thus creating conditions for the 
adhesion breakdown between fibres and the matrix, especially when the amplitudes are 
sufficiently high. 
 
 

2  COMPOSITE MATERIALS USED IN NUMERICAL EXAMPLES 
Four composite materials used in the numerical examples of the next section were described in 
detail in [2, 7]. These materials have the same epoxy matrix (EPOF-828) and differ in the type of 
carbon reinforcement. The following reinforcements are considered: R1 – commercial carbon 
microfibre Thornel T-300 with the diameter of 8 micron; R2 – graphite microwhiskers with the 
diameter 1 micron; R3 – zigzag carbon nanotubes with the average tube diameter of 10 nm; R4 – 
chiral carbon nanotubes with the average diameter of 10 nm. Physical properties of the matrix and 
four carbon reinforcements are given in the Table 1. Two fibre volume fractions are considered: 

 (very small) and  (sufficiently small), with resulting composite materials 
denoted as CM1 and CM2, respectively. 

1.0=fc 2.0=fc

 
Table 1: Physical properties of the constituent materials 

Constituent 
materials 

Density ρ  
(kPa s2/m2) 

Young’s modulus 
E  (GPa) 

Lame modulus 
λ  (GPa) 

Shear modulus 
µ  (GPa) 

Poisson’s 
ratio ν  

Epoxy resin 
(EPOF-828) 1.21 2.68 3.83 0.96 0.4 

R1 1.75 228 131.5 88 0.3 
R2 2.25 1000 576.9 385 0.3 
R3 1.33 648 472.9 221 0.33 
R4 1.40 1240 715.4 477 0.3 

 
 



3  COMPUTER SIMULATION OF THE WAVE PATTERN.  
DEBONDING MECHANISM IN FIBRE-REINFORCED COMPOSITES  

In this section, the transverse plane wave propagating along the fibres (along the applicate axis) 
and polarised perpendicularly to them (along the abscise axis) is examined. Seven physical 
constants are required for the analysis of this wave using the theory of structural mixtures, which 
can be obtained from the experiments or calculated, i.e. three elastic constants ; 
two partial densities 

(1) (2) (3)
1313 1313 1313, ,C C C

11 22,ρ ρ ; shear interaction constant 1β  and inertial interaction constant (1)
12ρ . 

In this study, the values of physical constants were calculated using formulae of Bedford et al [6], 
Bedford and Drumheller [7], McNiven and Mengi [8] and Yeh [11]. They are given in Table 2. 
Once the physical constants are known, the coefficients of amplitude re-distribution, eqn (5), are 
calculated using Mathematica 5.1 software. 
 
Table 2: Physical constants required in the analysis 

Composite 
material 

(1)
1313C  

(GPa) 

(2)
1313C  

(GPa) 

(3)
1313C  

(GPa) 
1β  

(1022 Pa/m2) 

(1)
12ρ   

(103 Pa·s2/m2) 
CM1R1 0.0938 0.9461 0.0128 0.0115 1.006 
CM1R2 0.1037 0.9568 0.0029 0.7726 1.109 
CM1R3 0.1015 0.9544 0.0051 7672.3 1.094 
CM1R4 0.1043 0.9574 0.0024 7748.9 1.115 
CM2R1 0.2237 0.9417 0.0157 0.0164 0.7317 
CM2R2 0.2363 0.9558 0.0036 1.081 0.7833 
CM2R3 0.2335 0.9527 0.0062 10809 0.7756 
CM2R4 0.2370 0.9566 0.0029 10885 0.7865 

 
Figures 1 and 2 show the coefficients of amplitude re-distribution ( )(1)

1 ,l k ω  and ( )(2)
1 ,l k ω , 

respectively, as functions of frequency. The results are given for two composite materials with 0.2 
volume fraction of Thornel T-300 microfibres (CM2R1) and zigzag nanotubes (CM2R3), but other 
composites from Table 2 behave in a similar way. 
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Figure 1: Coefficient of the amplitude re-distribution ( )(1)

1 ,l k ω  as a function of frequency for 
CM2R1 (a) and CM2R4 (b). 
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Figure 2: Coefficient of the amplitude re-distribution ( )(2)

1 ,l k ω  as a function of frequency for 
CM2R1 (a) and CM2R4 (b). 

 
 
The first mode (the slow mode – with the typical phase velocity) will propagate independently in 
both constituents, having the amplitude  in the fibres and (1)

1
ou ( )(1) (1)

1 1, ol k uω  in the matrix. The 
second mode (the fast mode – with significantly higher phase velocity) will propagate 
simultaneously with the first, independently in both constituents of the materials, having the 
amplitude  in the fibres and  in the matrix.  ( )(1) (2)

1 1, ol k uω (2)
1

ou

As one can see from Fig. 1, the value of ( )(1)
1 ,l k ω  is always positive. It means that the fibres 

and the matrix always vibrate in-phase. In the same time, the value of ( )(2)
1 ,l k ω , Fig. 2, is positive 

only in the range critcut ωωω ≤≤ , where cutω  is the cutting frequency of the material and critω  is 
some critical frequency, after which it becomes negative. The cutting frequency is cutω = 354 
MHz for CM2R1 and cutω = 290.3 GHz for CM2R3; the critical frequency is critω = 500 MHz for 
CM2R1 and critω = 750 GHz for CM2R3. Therefore, for all frequencies higher than critω , the 
fibres and the matrix vibrate in anti-phase. This confirms an assumption about the existence of 
anti-phase vibrations. 

It is important to check whether or not the critical frequency critω  is the limiting frequency, 
and if not, to establish the frequency range, in which the components of the mixture vibrate in anti-
phase. The simplest way to do this is to calculate the frequency for the wavelength, equal to the 
fibre diameter. This frequency can be determined from the phase velocity V  and the wavelength 
λ  as 2 Vω π λ= . For the considered composite materials these quantities are as follows: 

0.711 km/s for CM2R1 and 0.768 km/s for CM2R3; the minimal phase velocities for 
the second mode are 1.671 km/s for CM2R1 and 1.876 km/s for CM2R3;  

m for CM2R1 and m for CM2R3. Then the upper limit is calculated as 
1.312 GHz for CM2R1 and 1.179 THz for CM2R3. Therefore, the frequency 

range for anti-phase vibrations from 500 MHz to 1.312 GHz for CM2R1 and from 750 GHz to 
1.179THz for CM2R3. 
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Thus, based on the theoretical analysis in the framework of the theory of structural mixtures 
and the numerical results for concrete unidirectional fibre-reinforced composite materials, it is 
established that the second mode of the transverse wave, propagation along the fibres and 
polarised perpendicularly to the fibre direction, can create (in the range of high frequencies) a 
kinematical pattern that could be critical to the strength of the material. Propagation of this wave 
generates anti-phase vibrations in the components of the composite, which in their turn create 
forces, capable of breaking the interfacial adhesion between the fibres and the matrix. The 
phenomenon of anti-phase vibrations of the fibres and the matrix can be classified as a new 
debonding mechanism for fibre-reinforced composite materials. 
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