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ABSTRACT
A brief account of recent advances in modelling ductile rupture is given. The importance of the
inhomogeneity in the distribution of cavity nucleation sites is firstly emphasized. Then some recent
extensions of the Gurson model to account for non spherical void shape are presented. Finally recent progress
in modelling cavity coalescenceis highlighted.

1 INTRODUCTION

Ductile fracture of metallic materials involves void nucleation and void growth to
coalescence. Many studies have been devoted to the mechanisms accompanying
void nucleation from second-phase particles (see, eg Garrison and Moody [1]).
However very much remains to be done to include important aspects of cavity
nucleation sites. Similarly recent advances have been made to model void growth
and void coalescence. However a large research effort remains to be done for a
better analysis of these two steps of ductile fracture.

For along time ductile rupture has been analysed using uncoupled models (see eg.
Mc Clintock [2], Beremin [3]). In these studies it was assumed that rupture
occurred for a critical fraction of cavities, fc, initiated from inclusions. More
recently coupled models in which the effect of growing cavities on the
constitutive equations of porous materials have been introduced (Rousselier [4],
Gurson [5]). Tvergaard and Needleman [6, 7] introduced a model to analyse
ductile fracture using the Gurson potential. Their formulation involves two
parameters, the so-called critical porosity, f¢, and the acceleration factor, 5. In this
model, f. is equivaent to a critical void growth ratio and is intended to represent
the initiation of a macroscopic crack, while 5 has been introduced to let the load
bearing capacity vanish as a consequence of accelerated void growth and void
coalescence. The (f¢, 8) approach provides a phenomenological description of the
fracture behaviour. However it has been shown that the f. and & parameters have
no unique values to fit the experimental results (Zhang and Niemi [8, 9], Benzerga
[10]). This led to further improvements in the anaysis of these two steps of
ductile rupture. In this paper, these improvements are also briefly summarized.

2 HETEROGENEOUSVOID NUCLEATION

One aspect of cavity nucleation which has not yet received enough attention is the
inhomogeneity in spatial void distribution. This specific aspect has been



investigated to some extent in cast duplex stainless steels (Devillers-Guerville et
a. [11]). In these materials cavities are nucleated from cleavage microcracks
initiated in the thermally embrittled ferrite. Then the cavities grow in the austenite
phase. Due to the coarse grain microstructure and the crystallographic character of
these materials, it was shown that the cavities are preferentialy initiated in grains
with specific orientations. The cavities are grouped in relatively large clusters of ~
1 mm?®. The density of cleavage microcracks increases linearly with plastic strain.
The proportionality factor was found to be statistically distributed. Similar results
were obtained in a plain carbon steel (A 48) in which the distribution of MnS
inclusions, which were the initiation sites, was also thoroughly analysed using
guantitative metallography (Decamp et a. [12]). In both materias it was shown
that it was possible to partly account for the scatter and the size effect without
using the & accelerating factor provided that the inhomogeneity in cavity
initiation sites was taken into account. It seems therefore that the use of this
parameter is not necessary when the spatial distribution of initiation sites for
ductile rupture is properly taken into account.

3 CAVITY GROWTH

In this field much progress has been made since the pioneering theoretical works
by Berg [13], Mc Clintock [14], Rice and Tracey [15] and Gurson [5]. In
particular recent models have been introduced to account for matrix plastic
anisotropy and cavity shape anisotropy.

Many materials exhibit plastic anisotropy due to texture development. This
anisotropy can influence damage evolution : (i) at a microscopic level by
modifying the void growth rate, (ii)) a a macroscopic level as different
strain/stress conditions can be generated in testing specimens or components.
Following the method used by Gurson [5] a yield surface for a plastically
anisotropic material described by the Hill quadratic criterion has been derived
(Benzerga [16], Benzerga and Besson [17]). Cavities are still supposed to remain
spherical. The new equation for the yield surface iswritten as:
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where 0, isthe Hill equivalent stress defined by :
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In this expression, 0, isthe matrix flow stress, and s is the stress deviator while

the h;; coefficients are those of the Hill tensor expressed in the orthotropy frame.
The parameter h in egn (1) has been expressed as a function of the hij coefficients.
For an isotropic material h =2 and egn (1) corresponds to the Gurson potential.
An extension of the Gurson model by Gologanu, Leblond and Devaux
(GLD) [18, 19] has been proposed to account for cavity shape anisotropy. The
GLD model considers axisymmetric ellipsoidal cavities characterized by their
aspect ratio, W. The model is therefore limited to transversely isotropic porous
plastic materials, and is expressed in terms of a Gurson-like plastic potential :
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In this expression, H[ﬂ is the von Misesnorm, C, 1, gw, 9, k and a are function of

the porosity and the cavity shape factor. X is a constant tensor. The axis of the
cavities corresponds to the z-direction. For round cavities (S = 1), egn. (3) is
equivalent to the Gurson potential. As for this model the plastic strain rate tensor
is obtained using the normality rule and the porosity is obtained using mass
conservation. The evolution of the shape factor is given by an additional
differential equation :
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where €,, is the component of the deviator of the strain tensor along the cavity
axis and €, is the mean deformation rate. H and K are parameters which are

functions of f, S and the stress triaxiality ratio, T. More recently a potential
including both sources of anisotropy, ie that due to matrix plastic anisotropy and
that corresponding to cavity shape has been proposed [20, 21].



4 CAVITY COALESCENCE

Significant progress has been recently made in modelling the onset of void
coalescence by internal necking in ductile materials (Pardoen and Hutchinson
[22], Benzerga [10], Benzerga et al. [21]. This last stage of ductile rupture was
modelled using an extension of the Thomason model (Thomason [23]) in which it
is assumed that fracture occurs when the plastic limit load criterion originally
proposed by this author is reached. The model in [10, 16] gives a set of
constitutive equations including a closed form of the yield surface after void
coalescence with appropriate evolution laws for void shape and the size of the
ligament between cavities. In both models the derivation of the evolution laws
was guided by unit-cell calculations. The main implication of these modelsis that
the load bearing capacity of the elementary volume decreases as a natural
outcome of the void spacing reduction without imposing an a priori value to the o
coefficient in the Gurson [5], Tvergaard Needleman [6] model. These models are
very encouraging since they are able to predict the drop in the macroscopic stress
occurring during cavity coalescence when the initial microstructural parameters of
the material (volume fraction of cavities, shape of the cavity initiation sites, void
spacings) are known. The comparison between experimental results and
theoretical results are still limited (see Benzerga et a. [21]), since these models
reguire more information about the microstructure of the materials.

5 CONCLUDING REMARKS

Significant progress has been made in modelling ductile rupture over the last
recent years. The models shortly presented above apply to volume elements or to
components in which the stress-strain gradients are limited. These models require
large computational facilities when they are applied to real components or real test
specimens. A good example is provided by the simulation of the Charpy test in
the ductile-to-brittle transition where cleavage fracture is initiated after significant
ductile crack growth. Sophisticated constitutive equations accounting for large
strain rates and adiabatic heating have to be used (see eg. Tanguy and Besson
[24]). Moreover the numerical simulations must take into account the friction
phenomena. These simulations are tridimensional to account for ductile crack
growth tunnelling effect (Tanguy et a. [25]). The increase in the computational
power must progressively aleviate this difficulty related to the size of the
calculations. The difficulty associated with strong stress-strain gradients is more
serious. In the situation corresponding to a crack tip the results are dependent on
the mesh size. It is felt that this mesh size dependence will remain for some time
as the last fitting parameter in the models for ductile fracture as the stage of the
development of non-local damage models has not yet reached a situation
applicable to structural applications.
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