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ABSTRACT 

In this paper, an inverse approach based on the inherent strain method is proposed for constructing the 

residual stress field induced by welding. First, some smooth basis functions in form of polynomial have 

been employed to approximate the inherent strains. To select the basis functions properly, the previous 

valuable knowledge about the distributions of residual stress for some typical welding structures should be 

considered roundly. Furthermore, the singular modes in the assumed inherent strains, which do not cause 

the residual stresses, are excluded. Then, a stable profile of the inherent strain field can be assumed. Second, 

by employing the finite element method (FEM) and the least-square technique, the inherent strain field can 

be identified from limited experimental data at some key points. Finally, the distribution of residual stress 

can be constructed efficiently using the obtained inherent strain field. Compared with the traditional 

inherent strain method, in the present work, the sensitivity matrix for predicting the inherent strains can be 

evaluated more effectively and the experimental data needed in the identification procedure can be reduced 

significantly. A practical example is used to demonstrate the effectiveness of the present method. 

 
1  INTRODUCTION 

The residual stresses induced in the welding procedure can greatly affect the performance of 

structures. During the past several decades, a lot of research has been conducted to determine the 

residual stresses. For instance, various experimental methods and the FEM have been used to 

determine the residual stresses. In this research, to identify the residual stresses effectively, some 

regularization techniques have been introduced into the hybrid method by Ueda and Fukuda [1], 

i.e., the inherent strain method. Comparing with the original method [1], the major advantages of 



the current approach are: 1) the experimental data needed can be reduced dramatically; 2) the 

singular modes in the inherent strains can be excluded, and then a stable profile of the inherent 

strain field can be obtained; 3) the stability of the residual stresses can be improved. A practical 

example is used to demonstrate the effectiveness of the present method. 

 

2  THEORY 

The definition of an inverse problem for identifying the residual stresses in a homogeneous, 

linearly elastic and unloaded body, induced by welding can be stated as follows: 

Equilibrium conditions:                0=∂σ   (in V) (1) 

where σ is residual stress and V is the domain of the body. 

Kinematics:                         us∇=ε  (2) 

where ε denotes the strain in the body, and u is the displacement field. 

Constitutive law:                   )( *εεσ −= D  (3) 

where D denotes the elastic matrix and ε* is the incompatible strain, i.e., the source of the 

residual stresses. Ueda and Fukuda [1] refers to ε* as the “inherent strain” in the body. 

Boundary conditions:     0=⋅ nσ  (on Γσ) and uu =  (on Γu) (4) 

where n is the normal direction of the surface and u  is the prescribed displacement vector. 

Comparison with experimental results:   )...1(    kiii == σσ  (5) 

where iσ  is the stresses at the experimental point i obtained by experimental methods. 

The task in this inverse problem is to find the inherent strain ε* with the aid of the 

experimental data, and use it to get the residual stresses. Naturally, for complicated bodies or 

domains, the FEM is employed to describe eqns (1)-(4). In terms of FEM, an inherent strain 

imposed onto an element is transformed into the equivalent elemental nodal forces via the local 

constitutive law and the local strain-displacement relation. After assembling the elemental load 

vectors constructed from the inherent strain and elemental stiffness matrices, the following 

equation can be obtained: Ku=F, where K, u and F are the global stiffness matrix, the global 

displacement vector and load vector. Using the obtained u, the strain field ε can be computed 

using eqn (2). Finally the residual stresses can be evaluated from eqn (3). 

First, the inherent strain field is described using the components of inherent strain at 

some points as follows, 

                             ),,(* pg yx=ε  (6) 



where x, y and p are the coordinates and unknown components of inherent strain, respectively. 

From eqns (3) and (6), the unknowns in p are related to the stresses σ F at experimental points: 

                               Sp=Fσ  (7) 

where S is the sensitivity matrix, which represents the change of the residual stress at the 

experimental points caused by unit change of the unknown parameters in p. 

Finally, the unknown parameters in p are determined by minimizing the difference 

between the experimental stresses and numerically calculated stresses in the least square sense: 

2/)()( σσσσ −−= FTFΦ . For a welding plate in Figure 1, the method in [1] can be described 

as: 1) to discretize the plate using the FEM mesh in such a way that experimental points are 

coincident with the element nodes; 2) using the components of inherent strains at all mesh points 

in the plate as the unknown parameters p in eqn (6); 3) to construct the sensitivity matrix S; 4) to 

solve p from the least-square technique; 5) using the obtained inherent strains to get the residual 

stresses. The drawback of this method is that the large amount of experimental data is required 

since unknown parameters in p are too many. Also, this problem is usually ill-conditioned due to 

two reasons. The first is the singular modes in inherent strain. The inherent strains can be broken 

into two parts: effective inherent strain, which causes the residual stresses, and ineffective part 

(singular mode or compatible mode), which has no contribution to residual stresses and causes 

the problem ill-posed. The second one is the ill-conditioned sensitivity matrix, which can be 

attributed to the inappropriate locations of experimental points. 

In this work, to increase stability of solution, the following strategis are advocated 

herein: 1) First, we use some polynomials of specific orders to approximate the inherent strain 

field. The unknown coefficients in the polynomials can be determined through some selected 

nodes (key-nodes) in the domain or on the boundary. To properly determine the order of the 

polynomials, the previous knowledge accumulated numerically or experimentally about the 

inherent strains and the residual stress should be considered; 2) After appropriately selecting the 

order of the polynomials, the singular modes in the inherent strain can be excluded. Due to the 

explicit form of the inherent strains in form of polynomial, some terms in the polynomials 

corresponding to the singular modes, which satisfy the compatibility condition explicitly, can be 

recognized and removed easily; 3) Thirdly, to get a stable result, the proper selection of 

locations of experimental points is accounted for. This selection can be rationalized using the 



singular value decomposition method (SVD) to analyze the sensitivity matrix S. Then, we can 

adjust the positions of points to enhance the small singular values. 

When using polynomials to simulate the inherent strain field, the computation of 

sensitivity matrix is different. First, the inherent strain field in form of polynomial is 
                             ),,( ah yx=∗ε  (8) 

where a is the vector composed by unknown coefficients of polynomials. 
For the welding plate problem in Figure 1, a source area should be first assumed 

approximately. Out of this area, the inherent strain is thought of to be zero. This estimation can 

be obtained from the experiences and experimental data. Then, some key-nodes, i.e., the black 

points in Figure 1, should be selected in the source area. The inherent strains at these nodes are: 
                    T

nnn y,x,...,y,x,y,x )}()()({ *
22

*
211

*
1 εεε=p  (9) 

where xi, yi and *
iε  are the coordinates, and the inherent strains of the key-node i. 

When the number of components of inherent strain in the vector p are equal to the 

number of the unknown coefficients in the vector a, the distribution of inherent strain field in 

eqn (8) can be determined easily if the p vector are known using the following equation, 

                              ),,( pLa yx=  (10) 

This is a one to one linear mapping process. For plane problems, two components of inherent 

strain at a key-node are assumed. Then, the sensitivity matrix can be calculated as follows: 1) 

i=1, in eqn (9), assume the first component of the inherent strain at the node i equals to one and 

other components at other points are zero; 2) using assumed p and eqn (10), the unknown 

coefficients of polynomials for the inherent strain field, i.e., a can be determined. Then, from the 

distribution of inherent strain field in eqn (8), the elemental effective load vectors can be 

determined. Note that the part of inherent strain field out of the source area should be cut when 

computing the elemental effective load vectors as shown in Figure 1. Then, the global load 

vector can be formed; 3) from Ku=F, the displacements and the strain field can be calculated. 

Finally, from eqn (3), the residual stresses at the experimental points (white points), can be 

computed, which are the components of one column of the sensitivity matrix corresponding to 

the first component of inherent strain at the key-node i; 4) assume the second component of the 

inherent strain at the node i equals to one and other components at other points are zero. Repeat 

2) and 3) to compute the next column of the sensitivity matrix caused by the inherent strains at 

the node i; 5) i=i+1, go to 1) to calculate the other columns in S matrix. 
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3  A PRACTICAL EXAMPLE 

To verify this method, a steel plate with slit type butt welded joint [2] in Figure 2 is used. The 

welding conditions and material constants are given in Table 1, where Q, t and B are the heat 

input, plate thickness and welding length. Due to the symmetry of problem, only 1/4 portion is 

modelled. The source area is: 0≤x≤350 and 0≤y≤100. The inherent strain fields are assumed as: 

*
yε =a0x+a1x2+a2x3+a3x4+a4xy+ a5yx2+a6yx3+ a7yx4+a8y2x+a9x2y2+a10y2x3+a11y2x4, *

xε = a12+a13y+ 

a14y2 and *
xyγ =0. In Table 2, 12 key-nodes, from which 12 components of *

yε  and 3 

components of *
xε  are taken in p, are shown. The number of components in p is equal to that of 

ai in the above polynomials for inherent strains. Also, 12 experimental points are selected in 

Table 2. There are 15 unknown parameters, and 24 components of residual stress at experimental 

points are used as experimental data. The results are given in Figures 3 and 4. We can find that 

this method can give a good estimation on the residual stresses for this practical problem. 

 

4  CONCLUSIONS 

A systematic strategy is proposed to estimate the residual stress caused by welding. The key idea 

is to introduce some polynomials to simulate the inherent strains. The singular modes can be 

excluded easily. The rational selection of the experimental points can be carried out through the 

SVD technique.  Compared with the traditional inherent strain method [1], both the order of the 
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Figure 1: A welding plate with an estimated source area Figure 2: Practical welding of a plate 
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Table 1: Welding and material parameters Table 2: Position of key-nodes & experiment points  

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 

 
sensitivity matrix and experimental data can be reduced effectively. Furthermore, the stability of 

the results can be improved. It is shown in the example that this method can give an accurate and 

stable estimation on the residual stresses with small amount of experimental data. 
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Q/(tB) 4200cal/cm2 

Young’s modulus 210000 MPa 

Poisson’s ratio 0.3 

Welding length 300 mm 

Yielding strength 280 MPa 

x coordinate (mm) y coordinate (mm)  
Key- 
node 

Exp. point Key- 
node 

Exp. point 

1 10 0 0 0 
2 10 0 50 25 
3 10 0 100 75 
4 200 0 0 100 
5 200 0 50 175 
6 200 0 100 250 
7 300 50 0 0 
8 300 100 50 0 
9 300 150 100 0 
10 400 200 0 0 
11 400 250 50 0 
12 400 300 100 0 

Figure 3: Identified and experimental results at y=0 Figure 4: Identified and experimental results at x=0 


