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ABSTRACT 
The paper deals with a numerical procedure available for the analysis of unreinforced masonry structures. 
The model is capable of predicting the likelihood of cracking and the expected crack widths. Masonry is 
modelled on a discrete system of rigid blocks connected by unilateral elastic contact constraints. The 
numerical algorithm is based on the introduction of suitable distortion terms capable to generate internal 
coactions such as to give back the compatibility in the sign conditions where tensile stresses are not 
admissible. The distortion terms can be interpreted as cracks caused in the material because of the no-
tension behaviour. A convenient way to define the ‘contact device’ which links adjacent blocks, through 
which a mortar joint could be simulated, is to consider a sort of Drucker’s model consisting of a set of 
elastic links orthogonal to the contact surface between two adjacent blocks, and an additional link tangent 
to the same contact surface. In accordance with the assumption that only compressive forces can be 
transmitted from one element to another, no tensile strength in the joints is considered. Through the results 
of the numerical procedure it is possible both to define and locate the cracking pattern, highlighting the 
actual reacting structure, within the apparent one, and to evaluate the width of the cracks located in the 
joints.  

 
1 INTRODUCTION 

It is well known that the main problem in the analysis of masonry structures is the different 
compressive and tensile strength that characterizes the material behaviour. Such a circumstance 
makes it impossible to understand which is, in a pre-assigned structural configuration subject to 
any external action ( loads and/or inelastic displacements), the actual reacting structure. In order 
to simplify, as much as possible, structural problems involving non-isoresistant materials, the 
assumption of no tension behaviour for the masonry seems quite appropriate. 

 
 

 
Figure 1: behaviour of contact constraint. No tension or weak tensile strength.  

 
 

Such an hypothesis, that is equivalent to the statement that no tensile force can be transmitted 
from one portion of the structure to another, although in some case may be unrealistic, can be 



considered a safe assumption. Nevertheless, such an assumption can be considered almost 
exactly true if, for instance, we deal with walls, arches or domes built with stone blocks 
assembled dry or with very weak mortar joints. In any case it’s also possible to consider  a 
prefixed weak tensile strength (Fig.1). Generally the analysis of structural problems involving 
unilateral constraints, expressed through systems of equations and inequalities, requires the use 
of Q.P. techniques. Otherwise, as an alternative, it is possible to obtain the solution by using a 
step by step procedure according to which the solution relative to the standard material ( linear 
elastic and bilateral) is assumed as starting point and is subsequently corrected according to the 
actual material skills. Such a method has already been practiced by Castigliano in 1879 [1]. 

 
2 UNILATERAL ELASTIC CONTACT CONSTRAINT 

Following a typically eighteenth century idea, let us consider the general problem of a masonry 
structure consisting of rigid blocks  linked through elastic mortar layers. In such a model the no-
tension behaviour of the material is totally supposed concentrated in the mortar joint located in 
between two adjacent blocks. Such a joint can therefore be assumed as an unilateral elastic 
contact constraint. In particular, the joint can be idealized, in a Drucker’s way, through an 
interface device consisting of a set of elastic links, orthogonal to the contact surface, capable of 
transmitting only compressive forces between the blocks, and additional links, parallel to the 
interface, through which the shear forces can be transmitted. The behaviour of the orthogonal 
links is assumed unilateral linear elastic, whereas for the parallel ones further hypotheses can be 
added in order to specify either the shear strength and to calibrate, for instance, the influence of 
the friction between the blocks, or a bilateral rigid behaviour totally capable to prevent the 
sliding. In practice a reasonably low number of orthogonal bars is enough to describe with 
significant expressiveness the behaviour of the joint and to appraise clearly the location ad 
depth of possible cracks (Fig. 2). 

 
 

 
 

Figure2 : models of interface device. Drucker’s model 
 



3 NUMERICAL PROCEDURE 
The masonry dome is modelled by a set of discrete three-dimensional rigid elements which 
represent single or multiple blocks of stone. Let’s consider, therefore, the general problem of a 
masonry structure consisting of n rigid elements linked through m unilateral elastic contact 
interfaces. (Fig.4). 
Assuming the structure subjected to the action of external loads and inelastic displacements 
represented respectively by the vectors ∈F ℜ and n6 ∈1Ω ℜ km  (where the value k depends 
on the number of contact constraints chosen to characterize the interface device and defines the 
degree of statically indeterminacy of the structure), the problem can be expressed through a 
system of equilibrium and elastic-kinematical equations, with some variables, those which 
correspond to the unilateral links in the interface model, subjected to inequalities which express 
sign conditions: 
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In the previous form (1) ∈A ℜ is the geometrical configuration matrix; kmn6 × ∈X ℜ  
indicates the unknown vector of internal forces located on the interface joints; the components 
of the ℜ  represents the unknown vector of displacement and rotation components of the 
centroids of the elements; 

km

x ∈ n6

∈K ℜ  is the diagonal stiffness matrix which characterizes the 
contact constraints; 

kmkm×

∈1Ω ℜ  is the vector of possible external inelastic displacements; km

∈2Ω ℜ  indicates the unknown vector whose components are internal dislocations which 
need for obtaining a solution capable of satisfying both the equilibrium equations, while 
respecting the sign conditions, and the elastic-kinematical compatibility of the actual reacting 
structure. On this subject, it is convenient to distinguish, within the vector 

km

2Ω , two types of 

entities, assuming for the former, related to the equilibrium aspects, the notation *
2Ω  and for 

the latter, related to the compatibility ones, the notation **
2Ω . 

Of course the system of equations (1), subject to the first sign conditions, could also have no 
solution; in such a case it means that the structure cannot be equilibrated under the given system 
of the external actions. In this case there is no vector ∈X ℜ which satisfies the 6n equations 
and the km inequalities simultaneously. 

km

However let us suppose that the system (1) in consistent. In such a case the general solution 
, that is able to satisfy the equilibrium problem and the first of the two 

inequalities, can be obtained assuming, as initial solution , that is relative to the bilateral 
linear elastic behaviour of the contact constraints: 
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The initial vector  can be suitably arranged in two sub-vectors: , whose components do 
not satisfy the sign conditions, and  whose components satisfy the sign conditions: 
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Note that is ∈t0X ℜ , where t is the number of the contact constraints that, in the initial 
solution, come out stretched. In any case t can be greater than the degree of statically 
indeterminacy of the structure. Such an initial solution is then modified through the vector: 

tm
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which, added to , satisfies the first of the (1) while respecting the sign conditions. X 0

The properties of the orthogonal projection matrix  (see 

[4]) and the appropriate choice of the unknown vector 
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*
2Ω , are the keys to understanding the 

meaning of the procedure. In its turn also the matrix C can be suitably partitioned in four sub-
matrices C , C , , : t 1 C T

1 Cc
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where the sub-matrix [ ]∈= 1tt CCC ℜ  has to be chosen as a full row rank matrix. On 

this subject the elimination of any linearly dependent row of the matrix 

kmt×

Ct , plays a key role in 
ascertaining the number of strictly necessary internal dislocations to give back the compatibility 
in the sign conditions. Computing the Moore-Penrose generalized inverse of Ct , it is easily 

possible to evaluate the vector *
2Ω : 
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If the solution of the unilateral problem exists, the vector solution which satisfies 
simultaneously the equilibrium equations and the first of the two inequalities (1), assumes the 
form : 
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Since the final vector X is different from the first elastic vector solution , it cannot satisfy, 
of course, the kinematical compatibility expressed through the second set of equations in the 
system (1). 

X 0

A very easy way to build up again such a compatibility is to consider the second set of 
equations in the system (1) in the form A x KXT + = 0 . Partitioning both the general matrix 



AT in two sub-matrices , , and the constitutive matrix At
T Ac

T K  in , , we obtain the 
solution: 
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which represents the vector of the displacements of the centroids of the elements only due to the 
actual reacting structure. Finally we can determine the vector **

2Ω , so that the compatibility of 
the second of the (1) is already reached : 
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The components of the vector 02 ≠**Ω  give the position and width of the cracks located in 
the joints: 
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4 NUMERICAL EXAMPLES 
The efficiency and versatility of the numerical procedure has been verified through the analysis 
of a structure consisting of a masonry panel with an arched opening subjected to two different 
load condition (Fig 3, 4). For both applications, width and depth of cracks are clearly marked in 
correspondence of the concerned interfaces, and the deformed configuration as much clearly 
visualizes the structure behaviour. The procedure allows us to define the limit configuration of 
equilibrium and, correspondently, the collapse mechanism that is due to the formation of cracks 
which precedes the ruin of the structure. The correspondence between the numerical solution 
and some experimental results performed on tests with small brick models is totally satisfactory 
in terms of actual reacting structure and failure pattern. 

 

     
Figure 3: crack pattern and final deformation in a model of structure under eccentric loads 



          
 

Figure 4: crack pattern and final deformation in a model of structure under lateral loads 
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