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ABSTRACT 

Methods for treating cracks that are arbitrarily aligned with the mesh are described.  This allows for 
arbitrary placement of cracks and the treatment of growing cracks without remeshing.  The 
methodology employs a local partition of unity in which basis functions that incorporate the 
discontinuity and in some cases a neartip enrichment by asymptotic neartip fields.  The extension of 
these methods to dynamic crack propagation and nonlinear shell problems is described here.  Examples 
are given which demonstrate the robustness and versatility of the method. 

 
1   INTRODUCTION 

Methods for describing arbitrary discontinuities are a key ingredient to successful modeling of both 
stationary and growing cracks. In addition, it is desirable to be able to easily introduce asymptotic 
neartip fields for elastic fracture mechanics problems. The extended finite element method (XFEM) 
developed in Belytschko et al [1] and Moes et al[2] has been quite successful at meeting these needs 
without requiring remeshing. Some recent improvements in the method can be found in Stazi et al [3] 
where the method was extended to higher order elements. Sukumar et al [4], Moes et al [5] and 
Gravouil et al [6] extended the method to three dimensional problems by using level sets to track the 
evolution of the crack.  An extensive survey can be found in Karihaloo and Xiao [7]. 

The method is based on a local partition of unity through which discontinuous functions, namely 
the Heaviside step function, and the basis for the neartip field can be introduced. However, for purposes 
of computational efficiency, the partition of unity is always local: only the elements that are cut by the 
crack or in the vicinity of the crack tip are enriched. This adds some complications for enrichments 
other than the step function, as discussed by Chessa et al [8], where remedies forthese difficulties are 
also proposed.  

In this paper, we describe new methods for treating crack growth in shells undergoing large 
displacements. Here the decomposition into continuous and discontinuous fields is applied somewhat 
differently in order to meet the requirement of director inextensibility. We also consider methods for 
dynamic crack propagation. For these applications, a new method for treating the elements containing 
the crack tip had to be developed.  The method requires the crack to be straight inside each element, but 
the direction of the crack can change from element to element, so the path is almost arbitrary. The 
dynamic XFEM method has only been developed for three node triangular elements so far.   
 

2   METHODOLOGY 
The treatment of the two classes of problems of interest here, nonlinear shells and dynamic crack 
propagation, necessitated the development of extensions of the standard XFEM formulation of the 
displacement field.  In the shell problem, a Mindlin-Reissner theory based on directors is employed.  
Therefore, it is necessary to construct the displacement field so that the directors remain inextensible.  
This was accomplished in [9] by using the following director field   

The displacement field for dynamic crack propagation is constructed by superimposing a 
triangular element with one edge coincident with the crack tip on the element that contains the crack tip.  
Within the superimposed element, the standard XFEM formulation for a discontinuity is used, but the 
classical terms are not.  This avoids the difficulty of shifting from one type of enrichment to another 
that would be the case for a branch function based on the harmonic that is used in [1].  Details can be 
found in [10].  



In both cases the discrete equations are obtained by the principle of virtual work. The static 
equations are solved by a damped Newton method, whereas the dynamic equations are solved by 
explicit time integration.  Cohesive models are used for the crack once the advance of the crack is 
indicated.  It is important to note that in any formulation that corresponds to a continuum formulation, a 
cohesive law is not sufficient to describe the propagation of a crack.  As indicated in [10], a law for 
indication the direction and speed of the crack must be given to obtain closure of the governing 
equations.  In this sense, the interelemenet crack models in which cracking is only permitted between 
elements achieve closure through the discretization, which is undoubtedly one of the reasons for the 
strong dependence between solutions and mesh that is found in those methods. 
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where 
K
u  are nodal displacements, 

K
∆t  are nodal directors and 
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θ  are the nodal rotations and ( )
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are the shape functions. The nodal rotation norm, 
K
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The term 
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∆t  in (1) identifies the components of the director increment, 
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imposing thickness inextensibility, or 0
K K

δ =t t�  (unitary directors will maintain that property under 
deformation). 
Next we let 
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where ( ) 0f =ξ  defined the crack. The above is equivalent to standard XFEM for the membrane 
displacements, but is different for the rotations; the difference is crucial, see [9]. 
 

3   GROWTH OF CRACK IN NONLINEAR SHELL 
This example is based on the tests carried out by Keesecker et al. [11]. The example consists of of a 
crack growing in a thin closed cylindrical shell subject to spatially uniform internal pressure. The 
cylinder is reinforced with two tear straps (see the above reference) whose purpose is to induce 
‘flapping’', which consists of crack turning near these tear straps. If the purpose is fulfilled, axially 
propagating cracks are arrested.  The problem here is analyzed as a equilibrium problem; dynamic 
effects are not considered. 

The geometry is presented in figure 1, along with the material constants. Other details of the 
model can be found in [9].  Under the effect of internal pressure, the initial crack propagates 
longitudinally until the tear straps restrain the hoop strain and induce crack turning (or bifurcation, as 
experimentally verified in the above reference).  

A sequence of four deformed meshes is presented in Figure 2. It is interesting to note the bulging 
effect that occurs during the self-similar stage of the analysis. After the crack path turns near the strap, 
the bulging gradually disappears. The self-similar growth zone is imposed, but the crack path curves 
near the straps and the subsequent path are fully captured by the present model, even though we make 
the simplification of a sandwich shell model.  



 
 

Figure 1: Geometry, loading and relevant material properties for the pressurized shell problem, see [11] 
 

 

 
(a)                                                                                        (b) 

 

 
(c)                                                                                        (d) 

 
 

Figure 2: Pressurized shell: four deformed meshes (not magnified): (a) self-similar stage a = 86.36 mm; 
(b) self-similar stage a = 177.382 mm; (c) curved stage 198.12

long
a ≈  mm; 39.5

circumf
a ≈ mm, (d) final 

deformed mesh 



4   DYNAMIC CRACK PROPAGATION 
We consider a problem of a plate with an initial notch. A traction is applied instantaneously to the top 
and bottom edges of the plate. Experimental results for problems of this type have been obtained by 
Ravichander and Knowles. The plate was modeled by triangular elements. A Lemaitre isotropic damage 
model was used for the material, and the crack was propagated when the partial differential equation 
lost hyperbolicity in the vicinity of the crack tip, see [10] for details. This is a very simple damage 
model, but it proved quite effective in reproducing the salient features of the experiments, though it 
should be added that a tensile stress criterion gave similar results.  

The crack evolution is shown in Figure 3.  It can be seen that the crack propagates to the right, 
and from Figure 4 it can be seen that the speed of the crack increases in this stage.  When the crack 
speed reaces a certain point, the hyprbolicity criterion indicates crack propagation in directions that 
deviate from the straight line, and we allow the crack to branch as shown.  The two branches then 
continue to propagate to the right. 

The crack speed is shown in Figure 4.  It can be seen that the crackspeed always remains below 
the Rayleigh wavespeed, although prior to branching there is a rapid acceleration of the speed of the 
cractip.  The crackspeed is here compared to another method now under development that employs an 
elementwise modeling of the crack.  The two methods agree quite well, although the elementwise crack 
model accelerates earlier and branches earlier.  Then in the later part of the simulation, the two methods 
agree quite well.  

 
 

(a) t = 30.03 sµ  
 

 
 

(b) t = 46.00 sµ  
 

 
 

(c) t = 60.27 sµ  
 

Figure 3: Evolution of crack for a plate loaded at the top and bottom edges showing crack branching 



 
 

 
 

Figure 4: Crack speed for crack branching problem 
 
 

5  CONCLUSIONS 
The applicability of XFEM to nonlinear shell problems and dynamic crack propagation problems 

has been demonstrated.  These have entailed the development of new ways of constructing the 
discontinuous displacement field, but they fit nicely in the general framework.  We have not discussed 
the update of the level set that describes the crack.  In Reference [6] this was accomplished by 
integrating the hyperbolic conservation equations that govern the level set.  This unfortunately is quite 
burdensome and furthermore requires special procedures the freeze the surface of the crack surface that 
has already developed.  In Ventura et al [12], techniques are developed that enable the level set to be 
updated by geometric equations and automatically freeze the preexisting crack surface.  The work on 
dynamics in [10] also brought out to us that XFEM can be viewed as a form of superposition, and that 
therefore one can contruct a crack model simply by superimposing elements around the crack, including 
the quarter point element.  This has been exploited recently in [13]. 
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